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Abstract—Fabric alignment is essential to key production
processes such as cutting, sewing, and fusing in garment man-
ufacturing. Traditionally, this task has relied heavily on the
dexterity and expertise of skilled human workers. Although
automated systems have been introduced, they often lack the
flexibility required for complex alignment tasks. In this paper,
we present a novel robotic fabric alignment framework that
fully automates the process with high precision and adaptability.
First, we propose a coarse-to-fine alignment strategy, where an
initial imprecise target position is roughly computed based on
a basic perception module and eye-to-hand calibration. This is
followed by a sliding mode control (SMC)-based visual servoing
approach (in an eye-in-hand configuration) to ensure a close-
up view of feedback features for the fine alignment process.
Additionally, we consider system disturbances estimated by a
fuzzy logic system (FLS) and combine it with the controller to
further enhance the system’s robustness. Finally, we developed an
advanced end-effector equipped with force/torque (F/T) sensors
and air-powered needle grippers for gentle fabric manipulation
using admittance control. We validate our framework through a
series of experiments that demonstrate its effectiveness in fabric
alignment tasks.

Note to Practitioners—Fabric alignment in garment production
is a labor-intensive task that heavily relies on skilled human
workers. Existing automated fabric alignment machines are
typically limited to specific fabric shapes, patterns, and mate-
rials. Furthermore, transitioning between different fabric types
requires extensive testing and adjustments, resulting in a lack of
adaptability and flexibility. In this work, we propose a robotic
fabric alignment system based on a coarse-to-fine alignment
strategy. The initial target pose is roughly estimated using a basic
perception module and eye-to-hand calibration, followed by fine
adjustments through a visual servoing controller in an eye-in-
hand configuration. Additionally, to ensure gentle handling, the
contact force between the end-effector and the platform surface is
optimized using admittance control. The proposed system offers
practitioners a comprehensive solution for automating fabric
alignment with high precision, while maintaining flexibility and
adaptability across various fabric types and initial environmental
conditions.

Index Terms—Automation; Fabric manipulation; Visual servo-
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Fig. 1.  Fabric alignment is a fundamental task essential to various garment
manufacturing processes, including (from left to right) fabric cutting, sewing,
fusing, and pattern matching.

ing; Admittance control.

I. INTRODUCTION

Robotic automation has significantly advanced various in-
dustrial processes, leading to improvements in efficiency and
precision across industries and manufacturing sectors [1], [2].
However, garment production faces distinct difficulties that
make it different from other automated fields [3]. In contrast
to industries like car assembly or electronics, where robots
mainly deal with hard parts, garment manufacturing requires
handling soft, flexible materials [4]-[7] such as fabric, rope.

Fabrics are deformable objects that easily change shape
when subjected to external forces. However, fabric manipu-
lation is integral across all stages of the garment production
process. Among all the production processes, fabric alignment
is a critical operation in garment manufacturing, serving as
the foundation for key processes such as cutting, sewing, and
fusing (see Fig. 1). The precision of fabric alignment directly
affects the quality and efficiency of these processes, making
it essential for achieving consistent, high-quality production.
Traditionally, fabric alignment has been performed manually,
relying on the dexterity and experience of skilled workers
to ensure accuracy. While automated systems have been in-
troduced to streamline production, they are often rigid and
struggle to adapt to the inherent variability of fabrics, such
as changes in texture, elasticity, and shape. These limitations
pose significant challenges, particularly in an industry that
requires flexibility to accommodate frequent shifts in fashion
trends and production demands. As a result, there is a growing
need for more advanced automation solutions that can handle
the complexity of fabric alignment with greater precision and
adaptability.

To develop a robotic system that meets the requirements,
we conducted a detailed analysis of expert human workers
performing fabric alignment and identified key practices that
ensure high precision. Drawing on these insights, we integrated
two air-powered needle grippers and designed a specialized
robotic end-effector capable of securely grasping both ends of
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the fabric. This design minimizes deformation during fabric
handling, thereby improving both alignment accuracy and
operational efficiency. We also proposed a coarse-to-fine align-
ment strategy, beginning with an initial rough computation of
the target alignment position using a basic perception module
and eye-to-hand calibration. This is followed by a sliding mode
control (SMC)-based visual servoing approach (in an eye-in-
hand configuration) to provide close-up feedback for the fine
alignment process, mimicking the detailed visual feedback
techniques used by skilled workers during fabric alignment.

To further enhance the system’s robustness, we incorporated
a fuzzy logic system (FLS)-based approach to estimate system
disturbances, which is integrated into the controller design.
Additionally, admittance control was implemented to enable
robust yet delicate grasping and placement of fabrics in various
configurations, ensuring stable and gentle handling of fabrics
with diverse properties. We validated our framework through
a series of experiments that demonstrated its effectiveness in
fabric alignment tasks.

The contributions of this paper are summarized as follows:

o We leverage a coarse-to-fine alignment strategy to pro-
pose a novel robotic fabric alignment system with high
precision and adaptability.

e We propose a new sliding mode control (SMC)-based
visual servoing controller that utilizes a fuzzy logic
system (FLS) to estimate disturbances, and thus, provides
adaptiveness and robustness.

e We develop an advanced end-effector equipped with
force/torque (F/T) sensors and air-powered needle grip-
pers for gentle fabric manipulation, and considering stable
robot grasping through admittance control.

The rest of this article is organized as follows. In Section
II, we carefully discuss the advantages and limitations of
current mainstream approaches for fabric manipulation. The
problem formulation is discussed in Section III. In Section
IV, we provide a brief overview of admittance control in this
paper. Fabric identification approach is presented in Section V.
Details of the visual servoing-based fabric alignment control
design and stability analysis are presented in Section VI.
Experimental results are shown in Section VII. Section VIII
presents concluding remarks and future work.

II. RELATED WORK

This section reviews the literature on deformable object ma-
nipulation (DOM) [8], focusing specifically on fabric manipu-
lation and object alignment. It highlights the progression from
traditional methods to more advanced, adaptive strategies.

A. Traditional Fabric Manipulation Techniques

In garment manufacturing, the majority of processes are still
performed manually, with only a small portion of specific tasks
being fully automated. Traditional approaches to fabric manip-
ulation automation often rely on mechanical solutions, which
are typically task-specific and lack the flexibility required to
handle the variability and complexity of fabrics. For example,
[9] introduces a versatile gripper capable of executing a wide
range of grasps, simplifying tasks such as picking up folded
garments or folding fabric in mid-air. Similarly, [10] designs

an innovative robotic gripper inspired by human grasping
strategies for handling fabric materials. Building on this, [11]
proposes automation technologies for common manufacturing
processes in garment factories. Despite these advancements,
traditional systems rely heavily on rigid-contact approaches for
fabric manipulation. This reliance limits their adaptability and
precision, particularly when dealing with fabrics of varying
characteristics or operating in unstructured environments.

B. Visual Servoing and Admittance Control

Advancements in computer vision have made visual ser-
voing a significant breakthrough in fabric manipulation [12].
In [13], system feedback is used to train a pseudo-kinematic
model, which is then applied to folding and sorting tasks. The
authors further extend their research to various manipulation
tasks, demonstrating improved system stability and precision
compared to purely mechanical methods [14]. Similarly, [15]
introduces a model-based closed-loop control framework to
enable human-robot collaboration for cooperative fabric ma-
nipulation. [16] presents a collaborative object transportation
approach, enhancing the accuracy of deformation detection
through data-driven depth estimation. Additionally, a grasping
framework is proposed in [17] to support diverse grasping
strategies for hybrid grippers. However, these methods often
require multiple iterative manipulations to determine optimal
robot actions, making them less suitable for industrial appli-
cations where speed and efficiency are crucial.

Admittance control, on the other hand, enables robot-
environment interaction by adjusting the robot’s movements
based on force feedback [18]. For example, [19] proposes
a physical human-robot interaction approach using a robotic
exoskeleton to address unknown dynamic characteristics. Sub-
sequently, [20] develops an admittance-based controller for co-
ordinated operations within constrained task spaces, preventing
collisions with the environment. Combining admittance con-
trol with visual servoing offers a robust solution for managing
the unpredictable dynamics of fabric manipulation, making
it particularly advantageous in tasks requiring adaptability
and precision. However, existing fabric alignment techniques
struggle with real-world complexities like fabric uncertainties,
environmental factors, and robot interactions, due to a lack
of integration between visual servoing, force control, and
compensation mechanisms, resulting in reduced accuracy and
reliability.

In contrast, we propose an innovative control framework
that seamlessly integrates visual servoing with admittance
control and a Fuzzy Logic System-based compensation mecha-
nism. By holistically addressing force interactions and variable
environmental conditions, the framework achieves superior
alignment performance, as validated by experimental results.
Furthermore, it shows great potential for high-precision tasks
such as pick-and-place operations, making it a versatile solu-
tion for robotic applications in precision manufacturing.

III. SYSTEM OVERVIEW

Notation: A vector and a matrix are denoted by lowercase
and uppercase bold letters, respectively, e.g., v and M. F=p
represents a point p within the frame . By default, all points
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COARSE-TO-FINE FRAMEWORK FOR ROBOTIC FABRIC ALIGNMENT
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Fig. 2. The graphical schematic of the fabric alignment. The green arrow
indicates the direction of the robot’s movement. (a) Initially, the G-fabric (blue
fabric) and A-fabric (yellow fabric) are randomly positioned in the workspace.
(b) The robot moves above the G-fabric. (c¢) The robot grasps the G-fabric
and lifts it. (d) The robot then positions the G-fabric above the A-fabric while
maintaining a specified distance for initial alignment. (e) Visual servoing is
activated to facilitate the alignment process. (f) Finally, the G-fabric and A-
fabric are aligned according to the specified requirements.

are defined in the world frame F,,. 79T £, € SE(3) denotes
the transformation from frame JF, to frame Fy.

Fig. 2 shows the schematic illustration of the designed fabric
alignment framework. The proposed framework is designed
to address challenges in textile, garment manufacturing, and
other fabric processing industries. The core idea is to achieve
the fabric alignment task under specific requirements through
visual feedback, it enables robotic systems to handle complex
fabric shapes and adapt to external force variations, thereby
improving production efficiency and quality. As depicted in
Fig. 3, this work introduces a coarse-to-fine robotic fabric
alignment strategy, which consists of two stages: coarse align-
ment and fine alignment. In the coarse alignment stage, the
system captures the pose of the fabric to be grasped (G-
fabric) and the fabric to be aligned (A-fabric). In the fine
alignment stage, a carefully designed visual servoing algorithm
is employed to align the two fabrics based on visual fabric
feature feedback. Additionally, admittance control is applied
to ensure stable contact between the fixture and the workspace,
enabling reliable fabric grasping and placement.

The following assumptions are made: i) The robot moves
the fabric slowly, avoiding shaking, which is common with
soft objects during manipulations. ii) The fabric lies within
the robot’s reachable range. iii) The fabric can be separated
from the workspace using specific methods, such as color
thresholds. iv) Fabric alignment conducted on the same plane
can be transformed into maintaining a separation distance
between fabrics. This transformation is referred to as the
Manipulation Equivalence of fabric alignment.

IV. ADMITTANCE CONTROL

As the fabric is placed on a rigid workspace, using a hard-
contact reaching approach (bypassing the pose directly) may
result in collisions between the fixture and the workspace [21].
To address this issue, admittance control is employed to ensure
safety between the robot and the workspace while maintain-
ing stable grasping and placement of the fabric. Admittance
control operates with pose control as the inner loop and force
control as the outer loop, adjusting the robot’s motion based
on contact forces [22]. A second-order transformation model

is used to compute the correction pose x., which is fed into
the inner loop to achieve stable pose control. The correction
pose is derived as follows:

.= AN F. — Apke — Apx,) (1)

m

where X, is the desired acceleration. A,,, Ay, and A,
are symmetric positive-definite matrices representing inertia,
damping, and stiffness, respectively. F. is the difference
between the feedback force F' and the desired force F;. x.
represents the difference between the feedback pose x and the
desired pose x4.

The Runge-Kutta 4th-order method (RK4) [23] is used to
integrate Equation (1) and compute x.. The actual pose is
then calculated as Xctual = X + X4, Where xg; represents
the grasping or placement pose, detailed in Sec. V. Fig. 4
provides the block diagram of the admittance control. When
the robot comes into contact with the workspace (during
grasping or placement), the fixture must securely press against
the workspace while maintaining a consistent down-pressure
along the z-axis of the force/torque (F/T) sensor to ensure
stable contact. The wrench formula is used to transform
F,=10,0,f.,0,0,0]T in the F/T frame into the world frame
when using Equation (1).

V. FABRIC IDENTIFICATION
A. Fabric Classification

In this work, two fabrics with the same configuration but
different areas are used. For simplicity, the fabric area serves
as the metric to distinguish between the two fabrics. Fig. 5
illustrates the segmented G-fabric and A-fabric.

B. Feature Detection

By applying OpenCV/findContours to the segmented fabrics
and performing de-projection from the depth image using
known camera intrinsic and extrinsic parameters, the Cartesian
contour points in F, are obtained as follows:

t=[t1,....,t,.]T, d=][dy,...,d,]" ()

Here, t and d represent the contour points for the G-fabric
and A-fabric, respectively, and n. is the number of contour
points. Both t and d are ordered, and their respective centers
are denoted as t and d.

The fabric is asymmetrical, with one side being concave
and the other side approximately straight. We define the points
along the quasi-straight line as the side points, denoted as t
for the G-fabric and d, for the A-fabric.

C. Frame Definition

For simplificity, the establishment of the G-fabric frame
F: and the A-fabric frame F; is introduced. Due to the
unevenness of the fabric, the A-fabric and G-fabric are not
perfectly co-planar. Therefore, an optimal surface covering
the fabric must be determined for subsequent grasping and
placement. F; is used as an example to provide a generalized
representation.

The general surface equation is formulated as h,x + hyy +
h-z + hq = 0, where Q = [hy, hy, h;, hq]T is the hyperpa-
rameter. The construction takes the form f; = [t],1]T, where
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Fig. 3.

The structure of the visual servoing-based fabric alignment framework. The blue box represents the fabric identification module, which provides

pre-grasping and pre-placement poses. The pink box represents the coarse alignment stage and the fine alignment stage.
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Fig. 5. The visualization of the fabric identification, including fabric
classification, feature detection, and frame definition.

i € [1,n.]. Using the distance between t and the surface
defined by the optimal hyperparameter (2*, the following cost
function is constructed:

Q* = arg mmz

g (QTfZ NG h2)

st [QTf|/\/hE+h2+h2 <61, i€[lin] (3)
where §; is the distance threshold controlling the fitting ac-
curacy. Equation (3) minimizes the sum of distances between
t and the surface while ensuring that each point-to-surface
distance remains below the threshold. The nonlinear solver
[24] is applied to Equation (3) to compute 2*.

The normal vector of Q* is then used as the z-axis of
Fi, defined as a = [hg, hy, h.|T/|[hs, by, h.]|. To ensure a
forms an acute angle with the positive z-axis, dot(a, [0,0, 1])
is calculated. If the result is negative, a is reversed. Fig. 5
illustrates the determination of the optimal surface Q2*.

The direction vector along t is used as the y-axis of F;.
Principal Component Analysis (PCA) [25] is applied to t;
to obtain the principal component, which is normalized and
used as the y-axis: 0 = PCA(ts)main. The z-axis of F; is

calculated using the right-hand rule as n = (o x a)/|o x a|.

Setting t as the origin p ensures uniqueness. The transfor-
mation matrix from F,, to F; is defined as:
n o a p

Fuw —
Tft_{o 0 0 1}

Finally, repeating the above process for the A-fabric yields
7w T x,. Fig. 5 shows the fabric identification results.

(4)

VI. VISUAL SERVOING-BASED FABRIC ALIGNMENT

We define the studied fabric alignment as a classic visual
servoing task [26], focusing on extracting task-specific visual
features and tracking their changes. First, the desired fabric
feature is introduced, followed by the presentation of the robot-
fabric kinematic relationship. Next, a servoing controller is
constructed to achieve fabric alignment, and finally, the sys-
tem’s stability is proven, including approximation and control.
The end-effector’s pose is defined as r € RS, and the velocity
command u = 1 serves as the control input to be designed.

A. Desired Fabric Feature

As shown in Fig. 2b, the robot moves above the G-
fabric using Fu 7, as defined in Equation (4). At this
point, the fixture maintains a fixed distance J, above the G-
fabric. Since only the G-fabric is visible in the camera view,
the 2D boundary pixels belonging to the G-fabric can be
easily extracted using simple image processing algorithms.
Subsequently, the 3D boundary points are computed using the
camera’s intrinsic parameters and are considered the desired
fabric feature s4. This approach establishes a direct one-to-one
correspondence between 2D pixels and 3D points, enhancing
robustness against measurement noise [5].

B. Initial Alignment

After extracting sq4, the fixture descends to grasp the G-
fabric. However, due to measurement bias, 7+ T F, may not
accurately represent the G-fabric’s pose. This deviation can
cause the fixture to either remain too far from the workspace
or apply excessive downward pressure, potentially causing me-
chanical damage. To address this issue, admittance control is
applied to ensure stable grasping while simultaneously avoid-
ing excessive contact between the fixture and the workspace.
The robot securely grasps the G-fabric, as shown in Fig. 2c.
It then moves above the A-fabric using ©T x,, maintaining
the same distance d, as before.
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C. Feedback Fabric Feature

After performing the initial alignment, the system transitions
into the state shown in Fig. 2d. At this stage, only the two
symmetrically positioned eye-in-hand depth cameras are used
to observe the workspace during the visual servoing process.
First, the 2D boundary pixels from the images captured by
the two depth cameras are collected. These pixels belong to
the fabric (without distinguishing between the two fabrics at
this point). Then, as before, the 3D boundary points 2 are
calculated. Next, it is necessary to distinguish 2 into the G-
fabric and A-fabric. An intuitive approach would be to use
the depth values for classification. However, this can result in
inaccuracies because the depth-value range of € is typically
small. To address this issue, K-means clustering (KMS) [27]
is applied for classification, resulting in the G-fabric boundary
points ()., and the A-fabric boundary points Qgown. Finally,
Qdown 18 used as the feedback feature s.

Remark 1. The main contribution of this paper lies in the pro-
posed vision-based servoing framework for fabric alignment.
The selection of fabric features is not the focus of this study,
therefore simple boundary points are used as visual features
to validate the effectiveness of the proposed framework. For
complex fabric configurations, it can design specialized visual
features, such as spatial angles or triangular areas.

D. Model Establishment

When the system is in the state shown in Fig. 2d, slight
movements of the end-effector cause subtle changes in the
fabric feature. The kinematic relationship between s and r
is defined as the sensorimotor model [28] in the alignment
servoing task, expressed as s = f(r). Traditionally, an ap-
proximate difference equation is directly obtained. However,
in this paper, to ensure system stability, several disturbances
are considered during the modeling process, followed by
compensation design.

Discretization disturbance: Using the Taylor expansion
combined with the backward difference formula, the first-order
kinematic model is expressed as:

of

- M e d ) O

where J is the kinematic Jacobian matrix (KJM) that trans-
forms robot motions into feature changes, and d; (s, r) is the
Taylor expansion remainder. The matrix J can be regarded
as the local motion model of the fabric under quasi-static
manipulation by the robot. In practice, it is challenging to
compute J analytically (i.e., 9f/Or) because the physical
properties of the fabric are generally unknown. Instead of
identifying the full mechanical model, this paper proposes an
algorithm to compute local approximations of J in real time.

Approximation disturbance: As the KJM is estimated
gnline, it is divided into two components: J = J+J , where
J is the numerical estimation of J, and J represents the
approximation error. Combining this with Equation (5) gives:

s=Ju+d;(J,u)+ds(s,r), dyJ,u)=Ju (6

where d J(j ,u) represents the uncertainty in system modeling
caused by the KJM estimation errors.

Saturation Disturbance: In real-world applications, to
achieve rapid tracking, the system often outputs a large control
command, which can lead to input saturation nonlinearity.
Ignoring the effects of saturation can weaken system perfor-
mance and even damage actuators [29]. The common solving
solution is the hard saturation technique [30], however, it may
lead to discontinuities and abrupt changes, potentially leading
to system oscillations [31]. For the above issues, we propose
the following anti-saturation control law to approximate the
saturation nonlinearity [32]:

u(v) = uy - erf(v - g), erf(x) = \/QE/T o dt
b 0
1 1
up = (U + 5u,) + (4 — Sup) sgn(v) (7)

where v is the designed control input, while «(v) is the actual
control input after the saturation effect. sgn(-) is the sign
function, and erf(+) is the Gaussian error function [32]. The ad-
vantages of choosing Equation (7) are: i) It provides a smooth
transition for the input signal as it approaches the saturation
limits, rather than being abruptly truncated, allowing for con-
tinuous variation and avoiding abrupt changes and oscillations;
ii) It can effectively simulate nonlinear behavior, allowing
the control system to maintain a certain level of responsive-
ness even when approaching saturation. iii) By maintaining
continuous response, it helps to minimize nonlinear effects,
contributing to system stability and dynamic performance. iv)
The upper and lower saturation limits can be flexibly adjusted
by wu, and u,, i.e., when up = wu,, the saturation model
becomes symmetric. In this paper, we apply saturation limits
to the end-effector’s pose, i.e., u = {u;},v = {v;},i € [1,6].
The saturation error is defined as A(v) = u — v, it yields

u=v+A(v) 8)

Total disturbance: Substituting Equation (8) into Equation
(6) gives:

§=Jv+d,(J,Av) +ds(J,u) +dy(s,r) )

d(s,r)

where d, (J, A(v)) = JA(v) represents the saturation distur-
bance, and d(s,r) is the total disturbance.
Finally, the system in Equation (9) simplifies to:

§=Jv+d(s,r) (10)

where v is the control input to be designed later.

Remark 2. Since we consider regular fabrics, it is reasonable
to assume that slight r will produce slight S. As the Cartesian
points obtained from the camera model are used as visual
features, a one-to-one mapping relationship s = f(r) is
assumed to hold locally.

E. Fuzzy Approximation

To enhance system stability, the fuzzy logic system (FLS)
[33] is introduced to model the nonlinear disturbance d(s,r)
and compensate for it within the system. This results in:

d(s,r) =WT¢+¢ (11)
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where W is the ideal constant weight matrix, and ¢ is
the pre-defined fuzzy basis vector [33]. The matrix W is
unknown and requires online estimation. Let W denote the
numerical estimate of W, and W = W — W represent the
estimation error. FLS is used to estimate the total disturbance
and compensate for it within the controller.

Lemma 1. [33] For any x € R and any x > 0, it is certain
that: 0 < |z| — x tanh (z/k) < 0.2785k.

Lemma 2. [33] For any continuous vector f(x) defined on
the compact set ), and for any constant vector € > 0, the FLS
satisfies the following property:

sup |[f(x) = WTo(x)|| < [le]| (12)
xEQ

Assumptions 1. There exists an ideal weight matrix W such
that |¢|? < 7, where 1 > 0 is a constant for all x € €.

FE. Controller Design

Sliding mode control (SMC) is introduced to achieve closed-
loop alignment. Two tracking errors are defined as:

e} =S — sy, e =5—Jv (13)
where e; represents the alignment error and ey represents
the model estimation error. Here, s; is the desired fabric
feature defined in Sec. VI-A. Notably, s; can be time-varying,
representing an improvement over methods that assume it to be
constant [34]. Through Equation (13), SMC integrates model
estimation and controller design while providing a unified
stability analysis.

By computing the time derivative of Equation (13), we
obtain:

61 =8—8,  ey=8—Jv—Jv (14)

The sliding mode surfaces are constructed as:

o, =Kie +é, oy = Kses + €3 (15)

where K; and K> are symmetric positive-definite constant
matrices that regulate the convergence speed of oy and os.
Ensuring the convergence of o guarantees the convergence
of e;, meaning s approaches sy. This completes the fabric
alignment task. Theoretically, SMC-based control systems
offer superior robustness compared to conventional feedback
control systems [5]. Using Equation (11) and Equation (14),
the time derivative of o is given by:

61 =K (Jv+WTop4e—35y) + 6 (16)
The velocity controller is designed as:
v=JtK{ (o1 + K85 — & — K WT¢)
W =T (¢oTK, — W) a7)

where J* is the pseudo-inverse of J , I' > 0 is the coefficient
matrix, and J is a small positive constant. Since the design
avoids power terms and the sign function, v remains contin-
uous, preventing chattering. To ensure system convergence,

the quadratic function is defined as Vi(o1) = %a’{al. By

computing the time derivative of V; and using Equation (16)
and Equation (17), we have:

Vl(a'l) =—0olo; +o0lKe+ o-IK1V~VT¢> (18)

Referencing Assumption 1 and applying Young’s inequality,
the following relation is obtained:

1
oTK;e < ZA%Q lo1||® + 1 (19)

where Ak, denotes the maximum eigenvalue of K. Substi-
tuting Equation (19) into Equation (18), we have:

. 1 .
Vi(o1) < =(1 = 22k, llo|” + oTKiWTg +n - (20)

The KIJM is adaptively computed as:

J=(E-Jv-K;'w)v" Q1

1 : 1
w=—09— & — 0'?' tanh(—)7), 7 = tanh(—) — 727

B! "
where 71 and 7 are positive constants. The term §—Jv reflects
the updates of s and v with respect to J. The term ©o compen-
sates for system modeling errors, thereby improving stability.
The parameter 7} compensates for the FLS approximation error,
and the estimation error is given by 77 = n — 7.

The adaptive rule 77 employs the d-modification algorithm
[35] to address parameter drift caused by estimation errors.
It is important to note that this rule does not guarantee
identification of the true value of J. Instead, its objective is to
compute a numerical solution for J that continuously satisfies
the system model Equation (10).

Similarly, the quadratic function for o, is defined as:
Va(oa) = %0'50'2. Using Equation (21), the time-derivative
of V5 yields:

Vg(a'g) = —oJoy — tanh(1/71)7 (22)

G. Stability Analysis

Proposition 1. Consider the closed-loop system Equation (10)
under Assumption 1, with the velocity controller Equation (17),
the model estimator Equation (21), and the adaptive rule 1.
Given the desired fabric feature sq, there exists an appropriate
set of control parameters that ensure: (i) all signals remain
uniformly ultimately bounded (UUB), and (ii) the alignment
error €1 asymptotically converges to a compact set around
zero.

proof: Consider the following quadratic function:

tr(WTT—I'W 72
WOVTIW) T

Computing the time-derivative of Equation (23), we obtain:

V:V1(0'1)+ (23)

V=0lo) — te(WIT'W) + olés — 7 (24)

Using Young’s inequality, the following relations are de-
rived:
~ A Y2 <o Y2 o
< ——= =
V2= = + o

w(Wrsw) < W s Siwir es)
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Taking into account Equation (18), Equation (22), Equation
(25), the adaptive rules for 77 and W, and Lemma 1, we have:

V< —aV+b (26)
where a = min(2 — Ak /2,2, 3,72), and the residual term is
b= BIW|?/2 + 72n?/2 + 0.2785v17m > 0. By selecting an
appropriate value for K; to ensure a > 0, the states o1, o2,
W, and 7} exhibit asymptotic convergence and remain UUB.
This result guarantees that e; will eventually converge to a
compact set near zero. Furthermore, it demonstrates that the
estimation error J is bounded.
|
The SMC employed is a type of overdetermined controller,
meaning e; can only converge to a local range determined by
the feasibility of s4. In visual servoing, the local minimization
problem based on the Jacobian formulation is inevitable [5].
Algorithm 1 outlines the proposed fabric alignment frame-
work. The parameter d3 > 0 regulates the alignment accuracy.

Algorithm 1 Fabric alignment process
Require:
Fabric identification in Sec. V +— 7Tz, and 7+ Tg,
The robot moves to =T,
Calculate the desired fabric feature sy
Grasp the G-fabric + Admittance control: x4 + 7T,
The robot moves the G-fabric to 7« T x,
The robot conducts tiny movements to initialize J(0)
Start the visual servoing
while |e1] > d3 do
Record the current robot pose r and velocity u
Record the current fabric feature s
Calculate the error signals e; and ey <— Equation (13)
12: Calculate the surfaces o1 and o5 < Equation (15)
13: Update the FLS weight W Equation (17)
14: Update the velocity command v < Equation (17)
15: Update the KIM J < Equation (21)
16: Update the plant input u < Equation (7)
17: The robot moves using the updated u
18: end while
. Place the G-fabric + Admittance control: x4 < “+Tx,
20: Fabric alignment is completed

- =
S 2 e A U A

—_
Re)

VII. EXPERIMENTAL RESULTS

To validate the proposed fabric alignment system, we design
a flowchart, as shown in Fig. 6, to execute the task and
collect statistical data for the experimental results. In this
process, Initial Alignment, Visual Servoing, and Final Phase
represent the main components, while Admittance Control
ensures stable grasping and placement of the fabric. Initially,
coarse alignment is achieved using the estimated =Tz, and
FwTz,. Then, a visual servoing-based control strategy is
implemented for fine alignment. Finally, performance metrics
are calculated to verify whether the alignment task is complete.

A. Platform Setup

Fig. 7 illustrates the experimental setup for validating the
fabric alignment tasks. A RealSense RGB-D calibrated D455
camera is used to observe the initial alignment from a top-
down perspective, following an eye-to-hand configuration.
The HansRobot (Model: E05) is employed as the robotic
platform, as shown in Fig. 7a. A KWR75B 6-DOF F/T sensor
is used to detect the contact force between the robot and
the environment, enabling admittance control. A zero-offset
calibration was conducted to ensure accurate measurements, as
shown in Fig. 7b. The setup combines a 3030 aluminum profile
with 3D-printed fabric fixtures installed at the end of the F/T
sensor. Two pneumatic needle-type suction cups (Model: WJ-
T20*45) are used as fabric grippers. These suction cups are
attached to the aluminum profile via 3D-printed connectors
and are horizontally positioned at both ends of the profile,
as shown in Fig. 7e. A high-pressure air hose (6 bar) from
the laboratory’s built-in system is connected to a program-
controlled solenoid valve, which is managed by the computer,
as shown in Fig. 7c and Fig. 7d. Two RealSense RGB-D
D405 cameras are horizontally mounted at both ends of the
aluminum profile using 3D-printed connectors, following an
eye-in-hand configuration. Both D405 cameras provide visual
feedback without requiring extrinsic calibration. To ensure a
comprehensive evaluation, two scenarios are considered: flat
placement and tilted placement. Each scenario includes two
fabric positioning configurations. Fig. 7f - Fig. 7i depict the
four cases.

To meet the assumptions outlined in Sec. III, the saturation
limit for 3-DOF translation is set to 0.03 m/s, while for 3-
DOF rotation, it is set to 10°/s. The proposed algorithm is
implemented in Ubuntu 20.04 using the ROS1/Python API
interface. Image processing, alignment control, and admittance
control operate within a servo-control loop running at 28 Hz.
The used fabric is custom-made for industrial production and
has predefined dimensions, allowing boundary points on both
sides to be extracted as feedback feature points.

B. Validation of Admittance Control

In this section, we evaluate the admittance control intro-
duced in Sec. IV. Fig. 8a shows the validation setup. A
custom 3D-printed handle is made to allow for free dragging
of the end-effector. For simplicity, the admittance control is
simplified to consider translation control without rotation here.
F;=1[0,0,0]T in the F/T frame, and the measured F should
be converted into the world frame.

Three desired trajectories x4 are adopted, namely spatial
helix, spatial ellipse, and spatial straight, see Fig. 8b. This is
done to verify the adaptive nature of admittance control in
regulating external human contact force. The robot is firstly
commanded to reach the initial position x4(0). Then, the
robot starts tracking x; while we randomly contact the F/T
sensor. Normally, the robot will move in the direction along the
contact force, achieving “escaping” the contact of the hand.
When external contact disappears, the robot continues tracking
x4. We conduct four experiments for each x4, considering
different dominance scenarios: A,, dominance (Setting 1),
A, dominance (Setting 2), Ay dominance (Setting 3), and a
combined dominance (Setting 4). Table I gives four settings.
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Initial Alignment (Sec. VI.B)

Visual-servoing (Sec. VI. C - Sec. VI. F)

Initial Fabric Move to G-fabric === ==== INo Initial Feedback SMC-based £~ Gverthan _1No
State Identification G-fabric Grasping 1 Dropping? State Feature Visual Servoing | Threshold? M ]
(Fig. 2a) (Sec. V) (Fig. 2b) (Fig. 2c) ————m———— (Fig. 2d) (Sec. VI. C) (17) + (212) L LR |
______ Yes Yes |
r 1
Fabric f i
| 1 Desired Fabric m Fuzzy Logic System —_———t
! 1 Feature (Sec. VI. A) Compensation 1 Max.#0of lyes
1 1 P 1 Attempts?
Feature B ptsc_,
| ) — Admittance ; ; (Sec. VI. E) -==7=--
Detection Desired Grasping No
J ! Coptiol Force/Torque
1 Frame | (Grasping) d 1
1| Definition | Fail

Admittance Control (Sec. IV) 4—* Fig. 4 ‘ Final-phase

'

I Alignment Accuracy | |G-fabric Placement| |Admittance Visual-servoing
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m I_ Attempts?_ /I I Meet? _ m I_Threshold?? / Force/Torque

Fig. 6.

a preliminary alignment. ii) Visual Servoing: the robot achieves the "final step’

Flowchart of the fabric alignment framework. It includes: i) Initial Alignment: the robot grasps the G-fabric and moves above the A-fabric to achieve

> fine alignment through visual feedback. iii) Admittance Control: responsible

for compliant manipulation during the grasping and placement of the fabric. iv) Final Phase: determining whether the fabric alignment task is completed.

Fig. 7.

(a)-(e): experimental setup; (f) - (i): the alignment of fabrics in four placement configurations, where the left subplots show the initial states and

the right subplots show the final aligned states. (f) and (g): Fabrics are placed on the ground, initially oriented in opposite directions. (h) and (i): Fabrics are

placed on a slope, also oriented in opposite directions.

RN

Fig. 8.
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200

The platform description of the admittance validation and results presentation. (a) The yellow 3D-printed handle is designed to assist human in

applying external forces to the end-effector, and two different grasping postures for instance. (b) Three adopted configurations of x4, i.e., spatial helix, spatial
ellipse, spatial straight, respectively. (c) The tracking profiles of ||x.|| of three types of x4. The display sequence is the same as in (b). Each subplot includes

four components of Setting 1 - Setting 4. The abscissa is the step size.

Fig. 8c presents the profiles of admittance control under
three x4 tracking scenarios. Each subplot includes a com-
parison between four sets of hyper-parameters and x4. The
results illustrate that when A, dominates, the system initially
exhibits good compensation with a smooth form. However,
the system shows a noticeable lag over time. This indicates
that A,, has a feed-forward compensation effect on the
system. When the frequency of external contact forces is
high (corresponding to F.), the performance of feed-forward
compensation can be adjusted by tuning A,,. A, has a
similar effect to A,,, but excessive A; can cause significant
fluctuations in x., thus affecting the effectiveness of compliant
compensation. Additionally, appropriately adjusting A, can

mitigate the lag effects caused by A,, to some extent. When
A, dominates, the system exhibits the strongest response to
F. and can respond at the fastest speed. This is because A,,
and A act in the feed-forward compensation stage, while Ay
directly affects the negative feedback loop. However, when
A is too large, the fluctuations in x. become even more
intense. This is because Ay is directly added to x., resulting
in a non-smooth curve. Moreover, in extreme cases (such
as sudden large-magnitude impacts of external forces), this
can cause significant displacement and affect the tracking
performance of the system. Through the above experimental
analysis, it concludes that A,, controls the system’s iner-
tia, which determines the rate of response to input forces.
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TABLE I
PARAMETERS SETTING (A, A}, Ag) OF THE ADMITTANCE CONTROL VALIDATION. THE TILTED NUMBERS IN EACH GROUP REPRESENT THE
PARAMETER VALUES THAT REQUIRE SPECIFIC VALIDATION. SETTING 4 IS OUR FINAL-ADOPTED PARAMETERS.

Parameter setting 1 Parameter setting 2

Parameter setting 3 Final setting 4

Helix (4.5926, 0.5792, 0.1325)  (0.4829, 3.5939, 0.9689)
Ellipse  (3.5815, 1.5892, 1.2689)  (1.3651, 5.5938, 1.8759)
Straight  (2.3251, 0.1065, 0.1059)  (0.1065, 3.3285, 0.1025)

(0.2654, 0.4898, 6.6581)
(1.5687, 1.9568, 4.3453)
(0.1035, 0.1084, 3.5789)

(2.5789, 4.6986, 3.1498)
(3.5937, 5.6894, 4.3459)
(1.6895, 3.3258, 2.2696)

A, controls the damping effect in the system, affecting its
buffering capacity and stability. Aj represents the system’s
resistance to displacement. Throughout the following sections,
A, Ay, Ay = (2.5289,4.5978, 3.2519), respectively.

Fig. 9. The fabric grasping with (first row) and without (second row)
admittance control in four placement configurations shown in Fig. 7. The
bottom left corner of the image indicates the success rate of the grasping.

Force of z-axis (N) Force of z-axis (N)

Force of y-axis (N)
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Fig. 10.  F/T profiles for Case 1, with time (s) on the abscissa.

C. Validation of Admittance Control Related to Manipulation

In this section, admittance control is applied during the
grasping and placing of the G-fabric. For simplicity, we focus
on fabric grasping. Four cases shown in Fig. 7 (Cases 1-4) are
used. F; = [0,0,—2.16, 0,0, 0] in the F/T frame, and —2.16 N
represents the desired contact force along the z-axis of the F/T
frame. The effects of using and not using admittance control
are verified from the following aspects.

Firstly, the success rate is calculated by repeating each
grasping scenario fifty times, and the grasping pose is de-
termined using Equation (4). Fig. 9 presents the grasping
results. The results show that admittance control significantly
improves the success rate (highlighted in red). Although it is
possible to manually adjust the end-effector’s pose to regulate
the downward force, such adjustments are open-loop in nature

and can easily result in mechanical actuator failures or damage
to the workspace. Fig. 10 illustrates the F/T profiles for Case
1. The red line represents the F/T feedback, while the blue line
indicates the desired signal. Since admittance control activates
when the fixture contacts the workspace, the blue line is
presented intermittently. The admittance control starts at 4.84 s
and ends at 8.53 s. Fig. 10 clearly demonstrates that admittance
control effectively maintains stable contact forces and torques.
For the 3-DOF force, static contact is achieved along the zy-
axes, while constant pressure is quickly established along the
z-axis. For the 3-DOF torque, although the curves deviate
visibly from the desired values, this is due to the small units on
the vertical axis. Despite these deviations, the zero rotational
energy of the 3-DOF torque is effectively maintained.

Fig. 11.
state with and without admittance control. The first row represents the state
without admittance control, while the second row represents the state with
admittance control.

Display of the fabric surface state and the needle-type suction cup

Fig. 11 shows the state of the fabric and suction cup after
50 repeated grasps. The results indicate that, as a needle-type
suction cup is used, without the effect of admittance control,
there is a high likelihood of surface damage to the fabric and
bending deformation of the needle due to excessive rigid con-
tact. In contrast, with admittance control, the fabric maintains
a good surface condition (with no obvious signs of tearing)
even after multiple grasping. The right two columns show that
when admittance control is not used, repeated grasping leads to
a reduction in the maximum extension distance of the needle.
This is due to excessive collisions between the suction cup and
the table, resulting in mechanical damage. The above results
show that admittance control not only ensures the integrity
of the fabric but also prevents mechanical failures caused by
excessive contact between the suction cup and the surface.

Additionally, due to the inaccuracies in camera calibration,
the measured =T, and 7+ Tz, may be incorrect. Without
admittance control, this deviation could lead to excessive or
insufficient contact between the suction cup and the surface.
In contrast, employing admittance control can partially com-
pensate for the effects of calibration errors, allowing for stable
contact between the suction cup and the surface, and enabling
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safe fabric manipulation.

the deviation angle changes approximately linearly. However,
when it exceeds 0.2, the error curve rises sharply. Additionally,
since the deviation angle in practical applications is typically
less than 10 degrees, it is evident from the figure that it is
approximately below 0.1. Therefore, Equation (3) effectively
ensures the accuracy of the z-axis calculation. The potential
reason is that the nonlinear constraint in Equation (3) aims to
limit the distance from each point to the fitted plane, thereby
mitigating the impact of wrinkles to some extent. Applying a
clustering method to the wrinkled regions can help reduce the
influence of wrinkle-induced point sampling on t and d.

Fig. 12.
fabric area. (b) Feature detection and frame definition. (c) The profile between
the fabric surface flatness and the z-axis calculated by Equation (3).

Validations of fabric identification. (a) Fabric classification based on

D. Validation of Fabric Identification

Fig. 12a shows the fabric classification results of two differ-
ently sized fabrics in various positions. The striped fabric rep-
resents the A-fabric, while the white textured fabric represents
the G-fabric. The results demonstrate that distinguishing fabric
types based on the area metric is effective across different
positions.

Fig. 12b illustrates the detection of contour points (t and
d), center points (t and d), and side points (t; and dy).
The RGB image from the D455 camera is converted into a
binary image using mask processing. Farthest Point Sampling
(FPS) [36] is applied to extract a fixed set of contour pixels.
Subsequently, the 3D contour points are computed by mapping
the corresponding 2D pixels using the intrinsic and extrinsic
camera parameters. The results show that the contour points
are evenly arranged, effectively representing the boundary
information, and the detection of side points is precise.

Fig. 12b also depicts the fabric frames (F; and F4). The
light blue region represents the optimal co-planar surface of
the fabric contour points (t or d), determined using Equation
(3), which is used to establish the z-axis of the fabric frame.
Notably, the z-axis of the fabric frame forms an acute angle
with the z-axis of F,. The y-axis of the fabric frame is
constrained to be horizontally oriented to the right along the
fabric surface. The results confirm that Equation (4) accurately
establishes the directional fabric frame, significantly aiding
subsequent grasping and placement tasks.

To further validate the effectiveness of Equation (3) in
calculating the z-axis, we present the relationship between
fabric flatness and deviation angle. The fabric flatness is
obtained by calculating the standard deviation of the z-axis for
t and d, while the deviation angle is the difference between the
calculated z-axis and the theoretical z-axis (0,0,1). The fabric
is placed on a flat table with varying degrees of wrinkling.
Fig. 12c indicates that when the flatness is less than 0.2,

P

Initial A-fabric

Fig. 13.  Visualization of the alignment error calculation.

E. Alignment Metric Definition

Three metrics are used to evaluate alignment performance:
success rate, running time, and alignment error. Inspired by
[37], we use the following technique to assess alignment
accuracy. At the start, we record the contour points on
the alignment edge (i.e., arc edge) of the A-fabric (fixed
sampling of 20 points). These points are inverse-mapped to
Cartesian space using the camera model and recorded as
Cinitial- Subsequently, after alignment is completed, a skilled
worker with extensive fabric processing experience manually
traces the contour points of the G-fabric, recorded as cgypa-
The alignment error (mm) is then calculated using the Mean
Squared Error (MSE):

20
1 . .
Error = 20 Zl l|Cinitial {2} — Cinar{?}|| 27

Fig. 13 illustrates the alignment error calculation process.
The red points represent Cipjtial, Sampled at the initial moment,
while the blue points represent cgp,1, manually annotated by
the experienced worker after alignment is completed. Due to
the soft texture of the fabric and the needle-like gripper used,
repeated grasping and placing actions cause deformation along
the fabric edges. Even when grasping and placing at the same
location, the fabric undergoes slight deformations, resulting in
fluctuations in alignment error calculations. Successful cases
refer to stable grasping and placing with alignment errors
below 5mm. Meanwhile, running time and alignment error
are calculated only for successful cases.

F. Same Shape-size Fabric Alignment

The experimental scenarios utilize the four placement con-
figurations depicted in Fig. 7. Due to space constraints, only
the scenarios shown in Fig. 7g and Fig. 7i are presented. Three
baseline methods (a), (b), (c) and the proposed method (d) are
are employed for a comprehensive performance comparison in
each scenario. All approaches are implemented based on SMC.
Admittance control is not applied in approaches (a) and (b),
resulting in a hard-contact method for grasping and placement.
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TABLE II
COMPARISON RESULTS OF THREE INDICES UNDER FOUR PLACEMENT CONFIGURATIONS SHOWN IN FIG. 7 AND FOUR COMPARATIVE APPROACHES.

Case 1 Case 2 Case 3 Case 4
Success Running Alignment Success Running Alignment Success Running Alignment Success Running Alignment
rate time (s) Error (mm) rate time (s) Error (mm) rate time (s) Error (mm) rate time (s) Error (mm)
(a) 11/20 32.1 £0.69 479 £ 1.37 11/20 44.1 £0.67 4.89 £+ 1.24 9 /20 253 £0.77 496 £ 1.69 10/20 362 £0.87 512+ 1.77
(b) 12/20 337 +£0.75 3.14 £0.57 13/20 46.1 £ 081 325+ 0.53 11/20 289 £0.61 396 £ 0.61 10/20 38.6 £ 0.81 4.02 £ 0.59
(c) 15/20 35.1 £0.87 4.86 £ 1.38 16/20 489 £0.73 498 £ 1.32 14/20 30.1 £ 0.82 475 £+ 1.67 16/20 40.6 £ 089 491 £ 1.75
(d) 19/20 37.6 £ 0.68 3.13 £ 0.49 18/20 50.8 £0.77 297 £ 0.55 16/20 328 £0.72  3.15 £ 046 17/20 423 £0.73 3.29 £ 0.67

Additionally, FLS is not utilized in approaches (a) and (c). Our
approach (d) activates all modules. To validate the system’s
effectiveness and robustness, we conducted 20 experiments for
each fabric placement configuration. Before each experiment,
the initial fabric configurations and the platform plate were
slightly repositioned. Fig. 14 present the fabric alignment
results. The first row shows the initial alignment results from a
third-person perspective. The last three rows depict the visual-
servoing-based alignment results, captured from two D405
cameras and a handheld camera. The red arrow indicates
the G-fabric’s movement direction output using our approach.
The results demonstrate that the proposed control framework
effectively accomplishes fabric alignment. The fabric grasping
remains stable without any dropping during movement, and
the placement yields satisfactory results. This highlights the
beneficial role of admittance control in fabric grasping and
placement. The results also confirm the accuracy of the fabric
frame Equation (4). Even under slope conditions, the G-

its success rate is lower due to the absence of admittance
control. However, with FLS, if successful, its alignment error
tends to be small. Similarly, for method (c), its performance
contrasts sharply with method (b). Method (c) does not utilize
FLS but employs admittance control, resulting in a slightly
higher overall success rate. However, in terms of alignment
error, method (c) exhibits larger alignment errors and is less
stable (with a relatively large standard deviation). From an
overall perspective, our method (d), employing both FLS and
admittance control, ensures stable grasping/placement while
controlling alignment errors concurrently, with a high success
rate and the smallest alignment error.

TABLE III
COMPARATIVE RESULTS OF MANIPULATION PERFORMANCE UNDER FOUR
DIFFERENT TYPES OF FABRICS AND FOUR COMPARATIVE FABRIC
CONFIGURATIONS ILLUSTRATED IN FIG. 16.

Success Rate  Running time (s)  Alignment Error (mm)

. . . . . 1 17/20 423 £ 0.73 3.29 £ 0.67
fabric remains parallel to the A-fabric while maintaining a 22; 14120 39.8 L 1.06 472 4 0.89
certain dlstange. Thls.(.iemonstrates thf? fszectlvgness of the 3) 16/20 436 + 129 425 4 076
proposed fabric definition. After the initial alignment, the @ 17/20 47+ 127 462 + 0.92

system achieves near-predetermined alignment criteria, with
minimal deviations when moving above the A-fabric. A rela-
tively accurate initial alignment facilitates subsequent visual-
servoing-based alignment, accelerating the overall alignment
process. After visual-servoing adjustments, the fabrics are
well aligned. Finally, by reactivating admittance control, the
G-fabric is stably placed above the A-fabric. Adjusting the
threshold value §3 allows fine-tuning of alignment accuracy.

Table II compares three metrics: success rate, running time,
and alignment error, across four placement positions and the
four approaches. Meanwhile, the visual comparison of success
rates and alignment errors is presented in Fig. 15. From the
success rate, it is evident that method (a) and method (b), lack-
ing admittance control, achieve success rates of around 50%.
The primary reasons for failure are unsuccessful grasping and
dropping during visual-servoing processes. This emphasizes
the importance of admittance control in ensuring stable contact
between the fabric and the fixture. Additionally, due to the
increased complexity of configurations in Case 3 and Case 4,
their success rates are lower compared to the first two cases. In
terms of running time, method (a) is the fastest, while method
(d) is the slowest. The times for method (b) and method(c) are
similar. The faster running time of method (a) is due to the
absence of FLS compensation and admittance control, while
method (d) activates both modules. Due to the adoption of
FLS compensation in method (b) and our method (d), they
exhibit lower alignment errors and lower standard deviations
compared to methods (a) and (c). Specifically, for method (b),

G. Different Shape-size Fabric Alignment

This section verifies the framework’s generalization, focus-
ing on alignment performance with different fabric shapes
and configurations. To achieve this, three additional fabric
shapes were cut based on the original fabric, as shown in
Fig. 16. These four fabrics are commonly used in the stacking
processes of collars and cuffs in clothing production. Fabric (1)
represents the original shape, while fabrics (2)—(4) are newly
added. Validation is performed using approach (d). The final
manipulation results are shown in Fig. 16. The left side of
each subplot represents the initial state, while the right side
shows the final aligned state. Table III provides a detailed
performance comparison for four various fabrics. For fabric
1, we directly provide the corresponding results from Case
4 - method (d) in Table II. The results demonstrate that the
proposed alignment framework performs effectively across the
four fabric shapes. However, there is a slight decrease in
performance when manipulating fabric (2). This is because
the fabric has large cutouts at both sides, leaving insufficient
surface area for the suction cup to make stable contact and
achieve a secure grip.

These results confirm the effectiveness of the proposed
coarse-to-fine fabric alignment framework and highlight the
importance of admittance control in maintaining stable fabric
contact. By incorporating dynamic, online adaptive compensa-
tion based on FLS to address system disturbances, alignment
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Fig. 15.  The comparison of success rate and alignment error among four
placement positions across four approaches.

Fig. 16.  Alignment results for four different fabric shapes and configurations.

Overall validations of the proposed fabric alignment framework, adopting the case shown in Fig. 7g (the first box) and Fig. 7i (the second box).

accuracy is further improved. Additionally, the integration
of visual servoing enables the proposed approach to adapt
to the most commonly used fabric shapes. By designing
specific fabric features, the system’s generalization capability
can be enhanced. Most fabric alignment devices rely on the
pre-determined manner, which places significant demands on
system model accuracy, increasing development complexity. In
contrast, the proposed framework does not require a precise
system model or symmetric grasping. As long as the fixture
can securely grasp the fabric, the system can achieve alignment
through visual servoing adjustments.

The proposed control method requires that the features on
A-fabric remain visible during the visual servoing process.
However, in practical applications, the program code imposes
saturation limits on the actuator commands, temporary occlu-
sions at certain time steps do not compromise the effectiveness
of the servo alignment process, as long as the features reappear
and are reacquired in subsequent time steps.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 05,2025 at 05:10:30 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Automation Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TASE.2025.3585644

COARSE-TO-FINE FRAMEWORK FOR ROBOTIC FABRIC ALIGNMENT

VIII. CONCLUSIONS

The article presents a visual servoing-based fabric alignment
framework for unstructured environments, addressing dis-
cretization, approximation, and saturation disturbances. Firstly,
an optimization-based directed fabric frame is constructed to
enable subsequent alignment servoing. Secondly, an SMC-
based controller is proposed to integrate identification and
control, while an FLS-based compensator is designed to
handle system disturbances. Thirdly, admittance control is
implemented to maintain stable contact between the gripper
and the fabric. Finally, a Lyapunov stability proof is provided,
demonstrating the boundedness of signals in the closed-loop
system and the convergence of alignment errors. However,
the framework has some limitations. For instance, the suction
cup positions are fixed, making it difficult to adapt to vari-
ous fabric types. Additionally, a calibrated depth camera is
required, which may be challenging to implement in practical
environments. Future work will focus on designing a fully
model-free control scheme that does not rely on calibration
or pre-measured fabric characteristics. Meanwhile, a sliding
mechanism can be designed to adaptively adjust the distance
between the two suction cups according to the fabric length.
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