IEEE ROBOTICS & AUTOMATION MAGAZINE

Beauty Industry in the Era of Embodied Al
A Case Study on Cosmetic Dermatology

Abstract—Over the past decade, various sectors have witnessed
significant advancements driven by machine learning-based Ar-
tificial Intelligence (AI). Robotics, in particular, has emerged as
a prime area for AI deployment, combining AI with physical
systems to create what is known as embodied AL This paper
delves into the application of embodied AI within the beauty
industry, with a particular focus on photorejuvenation-based cos-
metic dermatology, which aims to enhance facial skin appearance.
The beauty industry, known for its labor-intensive operations, is
currently facing a significant shortage of qualified beauticians.
This scenario underscores the potential for robotic innovations
to address this demand effectively. However, the integration of
robots into beauty treatments poses distinct challenges. This study
tackles these challenges specifically within the realm of cosmetic
dermatology, where precise manipulation skills are essential for
laser pulse delivery and thermal dose regulation. We introduce
a deep learning-based trajectory generator designed for laser
path planning, along with a model-based controller for managing
thermal doses to effectively enable photorejuvenation treatments.
Our real-world experimental results have shown that embodied
Al can achieve satisfying performance, indicating substantial
potential for enhancing automation levels in the beauty industry.

I. INTRODUCTION

Artificial Intelligence (Al) is a transformative force across
various academic, research, and industrial fields. It is increas-
ingly recognized for its ability to perform on par or surpass
human capabilities in various domains, including board games,
computer vision, and natural language processing [1]. The
incorporation of Al into digital environments has driven its
application in robotic embodiments, leading to the emergence
of the burgeoning field of Embodied Al. However, translating
the successes of Al from the virtual world into the physical
realm introduces unique challenges. This paper explores the
application of embodied Al within the beauty industry, with a
specific focus on cosmetic dermatology. This area represents
a prevalent segment of the beauty sector and is an insightful
case study for our investigation.

The beauty and personal healthcare industry is a rapidly
growing field. The global market size is projected to grow
from $1,610.5 billion in 2023 to $2,765.8 billion by 2030,
with a steady compound annual growth rate of more than
8% over the forecast period. This expansion is coupled with
a notable shortage of qualified aesthetic practitioners [2].
To meet the burgeoning demand for aesthetic services, the
integration of robotics holds significant promise. Robots are
poised to play a crucial role across a wide array of aesthetic
applications. Beyond merely responding to market growth, the
adoption of robotic technology in beauty and healthcare offers
multiple benefits. These include enhanced standardization of
treatments, reduced operational costs, and increased scalability
of businesses.
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Fig. 1. A robotic system designed for beauty tasks, utilizing model-based
approaches for low-dimensional data processing and neural networks for
handling high-volume data in the decision-making module.

While autonomous robots offer a promising solution, de-
ploying them in real-world aesthetic applications presents
complex challenges. Developing a robotic beautician involves
addressing several technical and practical issues.

Technically, robotic systems for beauty tasks must process
sensory inputs in real time to execute appropriate actions.
The perception systems in beauty robots need to handle high-
dimensional information, such as visual inputs, efficiently.
This efficient processing of complex sensory information is
crucial in achieving beauty tasks.

Furthermore, real-world beauty tasks typically involve a
series of intricate sub-tasks. Robot motion policies may need
to vary spatially (different areas may require distinct ap-
proaches) or temporally (strategies might evolve throughout
a procedure). Developing precise motion policies that are
tailored to specific regions is essential for the effective learning
and execution of these tasks.

Practically, the automation of beauty tasks must be metic-
ulously structured. While learning from data is a powerful
method for acquiring new capabilities, it poses potential risks,
particularly when human subjects are involved. Consequently,
it is vital not to rely solely on learning algorithms. Integrating
traditional model-based control approaches when necessary
can enhance reliability and effectiveness.

A conceptual illustration of robotic systems for beauty tasks
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Fig. 2. A wide spectrum of scenarios where robotic and Al technologies are used in the beauty industry: (a) Eyelash extension, (b) Nail painting, (c) Makeup

application, and (d) Hair transplant.

is shown in Fig. 1.

This paper explores the usage of robots in the beauty indus-
try by addressing the aforementioned challenges with a focus
on cosmetic dermatology services. Cosmetic dermatology is a
major specialized sector in the beauty industry that deals with
the appearance of skin conditions [3]. A popular treatment
strategy in cosmetic dermatology is photorejuvenation. The
principle of photorejuvenation-based skin care is to create a
controlled wound on the skin by burning with laser pulses.
The skin condition is expected to improve after the self-
healing procedure. In the procedure of photorejuvenation, a
dermatologist carefully manipulates a cosmetic laser to spread
the laser pulses over the subject’s facial skin.

The aforementioned challenges in beauty are particularly
evident in the context of cosmetic dermatology. The following
contributions present innovative solutions to address these
complex issues:

1) We develop a novel deep learning framework, specifically
based on PointNet++, to efficiently generate cosmetic
laser paths from RGBD data;

2) We leverage segmentation techniques for the differen-
tiation of facial regions to facilitate the execution of a
primitive motion policy;

3) We address the thermal dose regulation problem by a
model-based control strategy, enabling precise control of
thermal emissions.

The rest of the paper is organized as follows. The relevant
literature is reviewed in Sec. II. We present our skincare case
study in Sec. IIl. Subsequently, the experimental results are
reported in Sec.IV. Finally, we conclude the paper in Sec. V.

II. RELATED WORK
A. Embodied Al in the Beauty Industry

Robotic systems and Al technologies are progressively
integrating into the beauty industry, fulfilling various roles,
from sophisticated treatments like planting follicles to basic
treatments like nail polishing and painting. Fig. 2 shows a
broad spectrum of instances where robots are used in the
beauty industry. Erdogan et al. [4] developed a novel embodied
Al system that can detect the follicles in pre-op and the
placed grafts in post-op. Homma et al. [5] demonstrated a cos-
metic robot system to achieve automatic makeup application,
utilizing a simplified robotic brush system with motors for
directional control and a spring for force regulation. Similarly,

an Al robotic system is developed to automate the process of
eyelash extensions [6]. Compared with the various perspec-
tives on cosmetic applications mentioned above, our work
focuses on developing an intelligent robotic system capable
of performing skincare tasks. Unlike makeup application or
hair-related procedures, skincare requires careful consideration
of factors such as laser trace generation and dose regulation,
which pose unique challenges.

B. Al-assisted Solutions to Skincare

The rise of Al technologies positively impacts the field
of skincare [3]. Shen et al. [7] developed a convolutional
neural network-based method to automatically detect facial
acne vulgaris, which attained a high performance in detecting
abnormality in the facial skin. Similarly, Chen et al. [§]
proposed a framework based on data width evolution and self-
learning to facilitate skin disease recognition. This framework
provides possibilities for individualized diagnosis services for
different groups. As a physical strategy for skin care, a
robot platform is developed to spread lotion [9]. While their
approach required physical contact with the human back, our
work leverages thermal interaction between the robot and the
subject. Compared with pure vision-based skin issue diagnosis,
our skincare work focuses on the embodiment of the skincare
services. Moreover, in our cosmetic application, we would like
to paint on the faces of subjects whose geometry is usually
unknown beforehand, which calls for efficient planning of
painting trajectories. To this end, our method relies on the
effectiveness of the deep learning technique. Particularly, as
we obtain the subject’s face with the help of a depth camera,
we leverage PaintNet to generate paint trajectories, which have
the merits of efficient processing of 3D point cloud data [10].

C. Other Embodied AI Robots and Methods

As an emerging area, embodied Al for the beauty industry
also shares similarities and differences with other robotics
areas. One closely related area is medical robotics, which
aims to promote patients’ health by using robots. Like medical
robotics, beauty robotics relies on robotic technologies to
reduce human errors and improve efficiency. However, the
key difference lies in the involvement of subjects. While the
human subject has little influence on the treatment strategy in
medical robotics, the physician and the human subject could
decide the strategy of a beauty robot. Another related area lies
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in the field of service robotics. In the field of service robotics,
robots are used for various tasks for the benefit of human
wellness, such as dental care [11], hair combing [12], and
massage [13]. Compared to general service robots, beauty-
focused robots prioritize enhancing personal appearance by
providing personalized beauty services tailored to specific
individual needs.

III. CASE STUDY ON COSMETIC DERMATOLOGY

This section presents the case study on cosmetic dermatol-
ogy, focusing on developing an intelligent robotic system for
laser-based facial photorejuvenation. To effectively perform
this task, we propose a systematic approach consisting of mul-
tiple interconnected phases, with facial region segmentation
and trajectory planning serving as the core components, as
illustrated in Fig. 3.

Our facial segmentation and trajectory planning framework
begins with data collection using an RGB-D camera, capturing
the face’s 3D geometry and surface features. The collected
point cloud data includes spatial coordinates (X, Y, Z), surface
normals, and geometric features that characterize local surface
properties.

The first processing phase employs a PointNet++ based
network to segment the facial point cloud into anatomically
meaningful regions, as different facial areas require distinct
treatment strategies. The second phase focuses on trajectory
generation through a two-stage process: generating a proba-
bility field that identifies suitable regions for laser application,
then fitting and optimizing trajectories based on this field.
This approach ensures that paths are locally smooth and
globally optimal for treatment. The output consists of region-
specific treatment trajectories tailored to each facial area’s
characteristics, guiding the robot’s end-effector during the
procedure.

Beyond this core pipeline, our system incorporates thermal
dose regulation that monitors and adjusts treatment parameters
to maintain safety while achieving the desired therapeutic
effect. This critical aspect will be elaborated in subsequent
sections. The following subsections detail each component and
its technical implementations.

A. Facial Region Segmentation

In photorejuvenation-based cosmetic dermatology, different
facial regions require distinct laser application strategies due
to variations in skin thickness, sensitivity, and aesthetic re-
quirements. For example, the forehead area typically requires
a different laser path pattern than the cheek area. We first
segment the facial point cloud into distinct anatomical regions
that align with cosmetic practices to facilitate such region-
specific treatment planning.

Our segmentation approach builds upon the hierarchical
feature learning capability of PointNet++ [14], which has
demonstrated remarkable performance in processing unordered
point sets with distance metrics. The key insight of our imple-
mentation lies in its ability to progressively capture features
at multiple scales through hierarchical feature learning, which
naturally aligns with the hierarchical organization of facial
features, from local surface details to global facial structures.

The segmentation branch of our framework, as detailed in
Fig. 4(a-b), processes the input point cloud through three set
abstraction levels (SA1-SA3), followed by feature propagation
layers (FP1-FP3) that restore point-level predictions. The part
segmentation head processes high-dimensional point features
(128,4096) through convolutional layers with ReLU activation
and dropout for robust region classification. The effectiveness
of our segmentation approach is demonstrated in Fig. 4(d),
where the network successfully segments the face into distinct
regions (forehead, cheeks, chin, nose, and eye area) with high
prediction certainty, particularly in regions with distinctive
geometric features.

The segmented regions directly inform the subsequent tra-
jectory generation process by:

« Enabling region-specific path patterns that align with each

area’s treatment requirements

o Ensuring clear treatment boundaries between different

facial zones

« Facilitating parallel processing of different regions for

efficient path planning

These segmented regions serve as the basis for our trajec-
tory field generation, which we will discuss in detail in the
following section.

B. Laser Trace Generation

Given the segmented facial regions, our next task is to
generate appropriate laser traces for each region. The challenge
lies in generating paths that ensure uniform coverage while
adapting to the geometric characteristics of different facial
areas. We propose a two-stage approach to address this chal-
lenge: first, generating a probability field highlighting suitable
regions for laser application, then fitting smooth trajectories
based on the generated field.

1) Trajectory Field Generation: A common approach to
trajectory generation is to directly regress trajectory coordi-
nates using deep learning models [15]. However, this strategy
faces significant challenges in our context, where the desired
outputs are geometrically constrained path segments. Deep
neural networks, which inherently produce distributions over
their output space, struggle to generate precise trajectories that
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Fig. 4. Overview of our framework architecture. (a) PointNet++ backbone architecture shows the hierarchical processing structure with set abstraction (SA)
and feature propagation (FP) layers for point cloud feature learning. (b) Part segmentation head detailing the network structure for facial region segmentation,
which processes high-dimensional point features (128,4096) to output region labels. (c) Trajectory field head illustrating the parallel network branch that
generates trajectory probability fields from the same point cloud features. (d) The face segmentation pipeline demonstrates the workflow from the input point
cloud to the filtered segmentation results. (e) The trajectory generation pipeline shows how segmented regions are processed to create optimized laser treatment
paths through probability field computation and trajectory fitting. The complete framework effectively integrates segmentation and path planning into a unified

architecture.

strictly adhere to geometric constraints, even when guided by
carefully designed loss functions. Furthermore, traditional path
planning methods that rely on discrete waypoints or binary
labels fail to capture the continuous nature of laser paths and
are sensitive to point cloud sampling variations.

To better align with the probabilistic nature of deep learning
and our task requirements, we reformulate the trajectory gen-
eration problem as learning a probability field over the facial
surface. This probability field indicates regions suitable for
laser application, from which geometrically valid trajectories
can be extracted. This approach offers several advantages: it
leverages the probabilistic output nature of neural networks,
handles uncertainties in expert demonstrations, and provides a
robust foundation for generating paths that satisfy geometric
constraints.

Given an expert-demonstrated trajectory denoted by 7 =
{q1,..-,am} C R3, we create soft labels through a distance-
based Gaussian transformation. Specifically, for each point p
in the point cloud, its probability label v, is computed as:

yp = exp(—d, /20°) (1a)
d, = mi — 1b
p = min Ip = qll2 (1b)

where d,, represents the minimum Euclidean distance from
point p to the expert trajectory, and o is a bandwidth pa-
rameter that controls the spread of the probability field. This
formulation naturally creates a smooth transition region around
expert trajectories, transforming discrete demonstrations into
a continuous probability field more suitable for deep learning.

For each point, we compute a rich feature set, including
spatial coordinates, surface normals, and local geometric de-
scriptors (linearity, planarity, and sphericity) calculated from
eigenvalues of the local covariance matrix.

As illustrated in Fig. 4(c) and (e), our trajectory genera-
tion approach utilizes a specialized network branch parallel
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Fig. 5. Visualization of trajectory fitting process. The probability field p(p) is
computed from point cloud data, with high values (phigh) indicating suitable
regions for laser application. Smooth trajectories 7;(s) are fitted through
the high probability regions €2, naturally following the geometric patterns.
Colorbar shows probability values from O to 1.

to the segmentation head. The trajectory field head shares
the same backbone features but processes them through a
different sequence of convolutional layers, ultimately produc-
ing a continuous probability field instead of discrete region
labels. This design enables the network to learn complex
spatial relationships while maintaining geometric consistency
with the segmented regions. Fig. 4(e) demonstrates how the
generated trajectory field is transformed into practical laser
paths through our fitting algorithm, with each facial region
receiving customized treatment patterns based on its geometric
and anatomical characteristics.

To maintain spatial continuity in the predicted probability
field, we incorporate a smoothness constraint in the loss
function that penalizes sharp probability variations between
neighboring points, balanced with the primary binary cross-
entropy loss for probability prediction. The resulting proba-
bility field effectively captures both the geometric constraints
of the facial surface.

2) Trajectory Fitting: Given the probability field p : R? —
[0,1] generated by our deep learning model from the point
cloud data P € R3, where Phigh(p) indicates regions suitable
for laser application and p.y(p) represents unsuitable regions
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(as visualized in Fig. 5), we aim to fit smooth trajectories
that naturally follow these high-probability regions. Let ~; :
[0,1] — R? denote the i-th trajectory function, where i €
{1,...,N} and N is the total number of trajectories. The
trajectory fitting process is formulated as follows:

Q={peP|pp >} (2a)
Ci={peQ|3qeCi:|p—qlz <€} (2b)
1
min > [isp) = pl* + / ()] ds - (20)
K 0

p€C;

where 7 € (0,1) is the probability threshold that identifies
high-probability regions in (2a). Equation (2b) represents the
process of density-based spatial clustering of applications with
noise, where the distance threshold ¢ > 0 segments the
high-probability points into distinct trajectory groups C;. The
smooth trajectory fitting optimization is defined in (2c), where
sp € [0,1] is the curve parameter corresponding to point p,
and A > 0 controls the trajectory smoothness.

This approach ensures that the trajectories naturally follow
the geometric patterns in the high-probability regions while
maintaining sufficient smoothness for robotic execution. The
data-driven nature of our method means that path characteris-
tics emerge from the underlying probability distribution rather
than being imposed through geometric constraints, resulting
in trajectories that naturally adapt to the specific requirements
of each facial region.

C. Thermal Dose Regulation

This section considers the regulation of thermal doses on the
subject’s facial skin. Thermal dose regulation plays an impor-
tant role in the effectiveness of photorejuvenation treatment,
as the treatment performance relies on self-healing the skin
cells for a better appearance. Both under- and over-emission
of laser pulse energy will cause issues. Under-emission of the
laser thermal energy will lead to insufficient treatment results
as the skin cells may not be thermally stimulated well. Over-
emission of laser thermal energy will cause a more severe
critical safety issue as laser pulses could cause irreversible
thermal damage.

Given the important role of thermal dose regulation in the
success of photorejuvenation, Our goal is to precisely control
the thermal doses on the skin area of interest. Furthermore,
we opted for a model-based control strategy over a learning-
based policy for several reasons. First, control policies derived
from demonstration data may pose safety concerns, resulting
in laser intensities exceeding permissible limits. Additionally,
the dimensionality of thermal sensing is relatively low, and the
thermal dynamics on the skin surface are well understood and
readily accessible. From a practical perspective, developing
a model-based laser controller is more feasible and efficient.
Consequently, we have employed a model-based control strat-
egy to address the thermal control requirements associated
with laser dosing.

Model-based
Temparature Control

Facial
skin surface

Thermal dose

regulation e Temparature

Tracking Cost

Thermal dynamics
Thermal
camera

Cumulative

. ; s.t. Temparature limits
equivalent time

Control bounds

Fig. 6. Schematic illustration of the architecture for thermal dose control.

Formally, assuming a homogeneous tissue, the thermal
dynamics model on the facial skin is given by the Pennes’
bioheat equation [16]

oT

pCo = —kV*T + wyep(Ty — T) + Qe 3)

where T' denotes the temperature of the skin tissue, p is the
density of the tissue, C' is the specific heat capacity of the
tissue, k denotes the thermal conductivity of the tissue, wy
is the blood perfusion rate, ¢, is the specific heat capacity
of the blood 7} is the arterial blood temperature, and finally
Q. represents the volumetric heat source due to the laser-skin
photothermal interaction.

In our application, the external heat source in (3) is from
the cosmetic laser pulses. The heat source resulting from the
laser-skin photothermal interaction is given by

Qe = ,UaIS(t) €]

where i, represents the absorption coefficient of the tissue,
I = Iyl.1, denotes the laser intensity with [y the peak
intensity, [, the radial spread of light following a Gaussian
profile, and I, accounting for the exponential attenuation of
intensity due to absorption and scattering. Besides, S(¢) is a
switch function modeling the activation and deactivation of
the laser power source. Its value takes one during the pulse
width period 7, and equals zero otherwise.

Since the control signal S(t) that induces heat to the tissue is
a discontinuous function, designing a continuous control signal
is preferable to simplify the control design. As the frequency
of the laser pulses can usually be directly chosen, we would
like to use the frequency of the laser pulses as our control
input. By observing that [ S(t)dt = [ 7,u(t) dt, we specify
the control signal as

S(t) = Twu(t). (5)

Treatments that involve heating biological tissues have
mainly three categories, namely hyperthermia, coagulation,
and vaporization, depending on irradiation exposure time and
the elevated tissue temperature [16]. Hyperthermia refers to the
overheating of tissue, coagulation involves the denaturation of
proteins to solidify tissue, and vaporization is the conversion
into gas through intense heat. In cosmetic dermatology, skin
photorejuvenation-based thermal treatment falls into hyper-
thermia. In hyperthermia, one important notion is the thermal
dose, which is quantified as the cumulative equivalent time at
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a treatment temperature 7p. The thermal dose D is calculated
as [17]

t
D= / RT-T() gy ©)
0

Here Ty = 43°C is thermal isoeffective temperature, indi-
cating the reference point for calculating equivalent thermal
dose. R is a temperature-dependent damage rate constant with
R =0.25 when T < 43°C and R = 0.5 when T" > 43 °C.

In clinical practice, the desired thermal dose is typically
the primary parameter of interest, as it directly determines the
effectiveness and precision of thermal treatments for the skin.
To this end, our controller first takes the reference thermal
dose and then computes the required temperature value based
on (6). Subsequently, to track the desired temperature value,
we formulate a model predictive temperature controller as
follows

N-1

min 3 [Tps — Toetl? + M > (Ta)
1=0

Ti1 = ATy + Buy + dy, (7b)

S.t. Tmin S Tk+i é TmaX7 (70)

Umin S Uk+i S Unax (7d)

where (7a) represents the control objective, which consists
of tracking the desired temperature value and penalizing the
control strength with A being a regularization parameter. The
discretized thermal dynamics is specified by (7b), where A is
the state transition matrix, B is the control input matrix, and d
is the thermal disturbances, as shown by [18]. The temperature
limits and the control limits are specified by (7c) and (7d),
respectively.

An overall schematic illustration of the thermal dose control
framework during the skin photorejuvenation procedure is
shown in Fig. 6.

IV. EVALUATION RESULTS
A. Experimental Setup

The experimental setup for photorejuvenation-based cos-
metic dermatology is illustrated in Fig. 7. An Nd:YAG laser
serves as the laser source, operating at a wavelength of
1064 nm. Since this wavelength falls within the near-infrared
(NIR) spectrum and is invisible to the human eye, the laser
generator also emits a low-energy flash of visible light to aid
in visualizing the laser pulses. The laser generator is mounted
at the end link of a URS robotic arm from Universal Robots.

An RGB-D camera from RealSense is positioned above the
face to capture the subject’s facial skin. In addition, a Boson
thermal camera from FLIR is employed to monitor the skin’s
surface temperature.

We utilize the FaceVerse dataset [19], which contains 2,688
high-quality 3D face scans encompassing 21 expressions from
128 distinct identities. We carefully selected 110 representa-
tive fitted models that comprehensively cover diverse facial
characteristics and features for ground truth annotation. The
preprocessing pipeline consists of the following steps:

« Point cloud extraction from fitted models while preserv-
ing geometric fidelity

RGBD Camera + Thermal Camera
Robot Arm

Laser System

r & ‘
g - | A

Fig. 7. Experimental setup for performing robotic cosmetic dermatology using
photorejuvenation.

TABLE I
ABLATION STUDY ON LABEL SOFTENING STRATEGIES

Method Training Stability ~ Path Error (mm)  Coverage (%)
Hard Labels Failed > 10.0 < 40.0
Soft Labels High 2.12 94.7

o Uniform sampling to maintain consistent point density
« Normal vector computation for each point to capture local
surface characteristics

The processed dataset is split into training (70%), validation
(15%), and test (15%) sets, ensuring a balanced distribution
of identities and expressions across splits.

B. Ablation Study

1) Effect of Label Softening: To investigate the effective-
ness of our probabilistic label transformation, we compared
binary labels with our proposed soft label approach:

« Hard Labels: Binary labels indicating trajectory/non-
trajectory points (0 or 1);

« Soft Labels: Our proposed Gaussian transformation with
bandwidth o.

The results demonstrate that hard binary labels are unsuit-
able for our trajectory learning task. The network fails to
converge to meaningful solutions with hard labels, showing
poor learning stability and severe generalization issues. This
is primarily due to the discrete nature of binary labels, which
creates sharp discontinuities in the supervision signal and
provides no meaningful gradients in regions between demon-
strated trajectories.

The transition to soft labels brings dramatic improvements.
Our probabilistic transformation enables stable training and
effective performance, reducing path error by over 75% com-
pared to hard labels. These findings strongly support our
decision to reformulate trajectory learning as a probability
field prediction task rather than a binary classification problem.
The significant performance gap between hard and soft labels
indicates that the probabilistic representation is an implemen-
tation choice and a crucial design decision that fundamentally
enables effective trajectory learning in our framework.
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TABLE 11
ABLATION STUDY ON GEOMETRIC FEATURES
Method Conv. Time (epochs)  Path Error (mm)  Smoothness
Basic > 1800 4.42 0.56
Basic+Normal 1150 2.85 0.83
Full 680 2.12 0.91

2) Impact of Geometric Features: To evaluate the impact of
geometric features in our framework, we conducted an ablation
study comparing different feature combinations:

« Basic: Point contains only Cartesian coordinates (x, y,

2);

« Basic+Normal: Cartesian coordinates and surface nor-

mals (z, ¥, 2, ng, Ny, N2);

o Full: Cartesian coordinates, surface normals, and geomet-

ric features, i.e., linearity, planarity, sphericity (z, y, z,
nx, ny, nz, L, P, S).

We analyzed the convergence speed and final performance
metrics for each variant. As described in Section III-A, the
geometric features were computed using local neighborhoods
of k = 16 points.

Table II shows that incorporating geometric features sig-
nificantly improves convergence speed and final performance.
The full model with geometric features achieves convergence
in approximately half the number of epochs compared to the
basic model. This acceleration in training can be attributed
to the rich structural information encoded by the geometric
features, particularly the local shape descriptors (linearity,
planarity, and sphericity).

Moreover, we observe that the geometric features contribute
to better path planning quality, reducing path generation error
by 38% compared to using only basic coordinates. The im-
provement in smoothness metrics (from 0.56 to 0.91) suggests
that geometric features help the network better understand
local surface characteristics, leading to more natural and
continuous laser paths. This is particularly important in regions
with high curvature or complex geometric structures, where
basic coordinates alone may not capture sufficient local context
for optimal path planning.

Adding surface normal information (Basic+Normal) pro-
vides an intermediate improvement, but the full geometric
feature set shows superior performance across all metrics. This
demonstrates that our carefully designed geometric features
capture complementary aspects of local surface geometry that
are particularly relevant for laser path planning tasks.

C. Deep Learning Model Performance

We evaluated the performance of our proposed deep learn-
ing framework in three key aspects: (1) the model’s segmen-
tation accuracy and trajectory generation quality across dif-
ferent facial regions; (2) comparative analysis against existing
methods such as PaintNet; and (3) generalization capability on
unseen faces and practical implementation.

1) Segmentation and Trajectory Generation Quality: Our
model achieved an average segmentation accuracy of 94.2%
across distinct facial regions on the test set. The central
facial area (shown in cyan) demonstrated the highest accuracy

Trajectory |Segmentation

Fig. 8. Facial region segmentation and trajectory generation results within
the segmented regions for training samples.

TABLE III
COMPARISON OF TRAJECTORY GENERATION METHODS

Metric Ours  PaintNet Manual
Data complexity Low High N/A
Training samples  ~120 >2,000 N/A
Process time (s) 1.3 8-10 1200-2400
Uniformity (%) 90.5 87.3 70-85
Coverage (%) 94.1 91.8 85-92

at 96.8%, while the peripheral regions (including the red,
blue, purple, and green segments) showed relatively lower
accuracy at 91.3%. This variation in accuracy is consistent
with the inherent challenges in defining precise boundaries
for transitional facial zones.

For trajectory field prediction, our model generated high-
quality probability distribution maps from which the extracted
trajectories exhibited superior smoothness and adaptation to
facial contours. As shown in Fig. 8, the generated trajectories
maintain consistent coverage density across different facial
shapes while naturally conforming to variations in facial
curvature.

To validate the generalization capability of our method,
we conducted experimental evaluations on subjects outside
our training dataset. As shown in Fig. 9(a), our segmenta-
tion algorithm successfully adapts to new facial structures,
automatically dividing the face into five distinct regions. The
trajectory planning module demonstrates robust adaptation,
generating treatment paths that maintain consistent coverage
while conforming to individual facial geometry.

The practical efficacy of our method was further vali-
dated through implementation on a robotic laser platform,
as illustrated in Fig. 9(b). The sequential frames show the
automated execution process, where the system maintains
precise positioning and smooth trajectory following. These
results confirm that our approach can effectively generalize to
new subjects while maintaining treatment precision and safety
requirements.

2) Comparison with Existing Methods: Table Il compares
our method and existing techniques. Compared to PaintNet,
our approach significantly reduced data preparation require-
ments, needing only approximately 120 region-labeled facial
point clouds versus PaintNet’s 2,000+ trajectory samples.

Notably, our method demonstrated significant advantages in
processing time. The entire pipeline from facial point cloud ac-
quisition to final trajectory generation took an average of only
1.3 seconds, compared to 8-10 seconds for PaintNet and 20-40
minutes for manual planning. This efficiency improvement is
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(a) Model process

(b) Implementation on robotic laser system
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Fig. 9.
automated treatment process execution on the robotic laser platform.
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Fig. 10. Evolution trace of temperature (upper row) and thermal dose (lower
row) on the facial skin at different time instances.

crucial for practical clinical applications, as confirmed by our
real-world implementation tests shown in Fig. 9.

D. Thermal Regulation

The performance of regulating the thermal doses in our
system is verified to showcase the treatment capability in
photorejuvenation. We first test the performance on a real-
istic tissue phantom manufactured of gelatin. Our goal is to
administer the desired value of thermal doses along the path
on the surface of the tissue. To this end, the robot arm is set
to move at a constant speed to manipulate the laser generator
over the tissue. During the experiment, the diameter of the
laser beam is set to be 2mm and the laser energy is 0.75J

For the MPC controller, the reference thermal dose is
specified by D,o; = 4 CES The control signal is the PWM
frequency constrained between 0 and 10Hz. Besides, the

(a) Visualization of automated region segmentation and trajectory planning results on an unseen test subject. (b) Sequential frames showing the

temperature limit is 43 °C. The time step of the controller
0.1s and the horizon of the MPC controller is 1s, which
corresponds to ten prediction steps. The initial temperature
of the tissue is 36 °C, and the tissue starts with a zero thermal
dose in the beginning.

The results are illustrated using the heat map shown in
Fig. 10, where the surface temperature is shown in the upper
row, and the administered thermal dose is shown in the lower
row. It can be seen that the temperature is controlled without
violating the specified constraints, and the thermal dose is
administered to the desired values.

V. CONCLUSION

In this paper, we investigate embodied Al in the beauty
industry. Particularly, we investigate photorejuvenation-based
cosmetic dermatology, which is a typical aesthetic service in
the beauty industry. At the core of the proposed methodology
lies the deep learning-based trajectory planning for the cos-
metic laser, where the learning model takes the point cloud
as input and outputs the cosmetic laser path. Additionally, we
develop a model-based method for thermal dose regulation.
Our experimental findings suggest that deploying robotics for
photorejuvenation treatments holds considerable promise for
advancing cosmetic dermatology.

There are certainly a few limitations associated with our
current achievements. The current robotic system lacks the ca-
pability to respond to service recipients’ real-time movements,
which can affect the precision and safety of the treatment.
Moving forward, we aim to address these limitations by
enhancing the responsiveness of the robot. Furthermore, we
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plan to conduct qualitative studies with recipients of the
service to gather feedback and improve market acceptance of
the robotic system.
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