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 A B S T R A C T

Long-horizon assembly tasks involving deformable objects pose substantial challenges for autonomous robots, 
stemming from infinite-dimensional state spaces, complex sequential dependencies, and high variability in real-
world conditions. In this work, we propose a novel and robust framework that tightly integrates Large Language 
Model (LLM)-driven symbolic planning with hierarchical imitation learning to enable reliable and generalizable 
solutions for deformable object assembly.  Our approach leverages the advanced reasoning capabilities of 
LLMs to translate natural language task instructions into structured symbolic task plans. This decomposition 
is initiated by a visual-language model (VLM) that generates descriptive subgoals from key visual frames of a 
human demonstration. Each subgoal is then automatically grounded in the robot’s perception via a VLM query 
mechanism, ensuring precise and task-relevant state estimation.  For execution, a 3D diffusion policy (DP3) 
conditioned on visual input and symbolic subgoals generates smooth, low-level action trajectories, bridging 
the gap between high-level symbolic reasoning and dexterous manipulation. We validate our hierarchical 
framework on a real-world round belt drive assembly benchmark, demonstrating significant improvements in 
success rates, error recovery, and generalization across diverse and perturbed initial conditions, compared to 
existing approaches. Our results highlight the potential of integrating LLM-based symbolic abstraction, targeted 
state querying, and diffusion-based visuomotor control for robust, autonomous assembly of deformable objects 
in unstructured environments.
1. Introduction

Deformable object manipulation [1–3] is a cornerstone challenge in 
robotics, crucial for diverse applications from surgical assistance [4] 
and textile handling [5] to domestic chores and industrial assem-
bly [6,7]. Unlike rigid bodies, deformable objects possess an infinite-
dimensional state space, making their perception, modeling, and con-
trol inherently complex [8]. This complexity is compounded in long-
horizon assembly tasks, where robots must execute a sequence of 
interdependent manipulation steps, often requiring precise control and 
strategic deformation to achieve the desired final configuration. As 
shown in Fig.  1, we focus on the round belt assembly task, a repre-
sentative manufacturing task that highlights the unique challenges of 
deformable object manipulation in real-world industrial contexts [9]. 
In this task, the robot must grasp, manipulate, and sequentially mount 
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a flexible polyurethane belt onto a series of pulleys and idlers, requiring 
not only accurate perception and dexterous handling of the belt’s shape, 
but also robust planning across multiple assembly steps. The round 
belt assembly exemplifies the demands of long-horizon, high-precision 
manipulation where deformation and environmental variation must be 
continuously managed for successful task completion. Current robotic 
systems [10] typically struggle with such tasks, limited by their in-
ability to generalize to novel object geometries, adapt to unforeseen 
environmental variations, or effectively plan over extended operational 
sequences.

Recent advancements [11–14] in Large Language Models (LLMs) 
have unlocked unprecedented capabilities in high-level reasoning, sym-
bolic planning, and human–robot interaction. LLMs can interpret nat-
ural language instructions, decompose complex goals into actionable 
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Fig. 1. The round belt assembly task. This task exemplifies the core challenges of 
deformable object manipulation, requiring precise control and strategic deformation to 
manage the belt’s infinite-dimensional state space during the assembly sequence.

sub-tasks, and even generate code or logical sequences, offering a 
powerful avenue for abstract task planning in robotics [15–17]. Simul-
taneously, imitation learning has emerged as a promising paradigm 
for robotic control, enabling robots to acquire complex behaviors di-
rectly from human demonstrations without explicit analytical model-
ing. While powerful for learning specific skills, traditional imitation 
learning often struggles with long-horizon tasks due to compounding 
errors and a lack of hierarchical structure for handling sequential 
decision-making [18,19].

Manipulating deformable objects like belts presents a significant 
challenge for robotic systems. The complexity arises not only from their 
infinite-dimensional state space but also from the need to achieve spe-
cific, semantically meaningful configurations—for instance, ensuring a 
belt is ‘properly seated’ within a pulley’s groove rather than just ‘near’ 
it. This requires a perception system that can move beyond simple 
geometric tracking to understand task-relevant states. Traditional meth-
ods, which often rely on complex physical models or hand-engineered 
visual features, struggle to robustly interpret these nuanced states, 
especially when faced with environmental variations like changes in 
lighting or object starting positions. Our framework directly addresses 
this perception gap by leveraging a Visual-Language Model (VLM). 
The VLM acts as a ‘semantic sensor’, capable of answering targeted 
natural language queries about the scene (e.g., ‘Is the belt correctly 
seated on the first pulley?’). This ability to translate ambiguous visual 
information into clear, actionable state knowledge is how our system 
manages complex object deformations and adapts to real-time condi-
tions, providing a level of robustness that is difficult to achieve with 
conventional approaches.

To address the challenges of long-horizon deformable object assem-
bly, this paper introduces a novel integrated framework that unites 
the high-level cognitive abilities of large language models (LLMs) with 
the precise and adaptable control of a hierarchical imitation learning 
architecture. At the core of our approach, an LLM-driven symbolic 
planner functions as the high-level ‘‘brain’’, transforming abstract task 
instructions into a structured sequence of symbolic sub-goals. These 
sub-goals then direct a hierarchical imitation learning system, in which 
high-level policies choose appropriate manipulation strategies, while 
low-level policies execute fine-grained actions to achieve the desired 
deformations and placements. Crucially, our framework employs a 3D 
Diffusion Policy (DP3) for robust and generalizable low-level visuo-
motor control. DP3 leverages point cloud observations to generate 
smooth, adaptable action trajectories, enabling the robot to manipulate 
deformable objects with precision even in complex, variable environ-
ments. By tightly coupling LLM-driven symbolic planning with DP3-
based continuous control, our system not only comprehends and plans 
for challenging deformable assembly tasks, but also executes them 
robustly across extended horizons—adapting to real-world variations 
and reliably recovering from minor errors and disturbances.
2 
We validate our framework through extensive experiments on var-
ious challenging long-horizon deformable object assembly scenarios. 
Our results demonstrate that this integrated approach significantly 
improves success rates, reduces task completion times, and exhibits 
superior generalization capabilities compared to existing methods. By 
bridging the gap between high-level symbolic reasoning and low-level 
continuous control, our work represents a significant step towards 
enabling more intelligent, adaptable, and autonomous robotic systems 
for complex deformable object manipulation in real-world applications.

While our framework integrates several powerful pre-trained mod-
els, its core novelty lies not in the individual components, but in their 
synergistic integration to form a robust, closed-loop system for long-
horizon deformable object manipulation. Our primary scientific con-
tribution is the introduction of a goal-oriented state query mechanism 
where the LLM planner actively generates natural language questions 
to resolve its uncertainty, and the VLM provides grounded, semantic 
answers by interpreting the visual scene. This LLM–VLM interaction 
creates a ‘‘semantic sensor’’ that replaces brittle, hand-engineered state 
estimators and allows the system to precisely track its progress against 
a symbolic plan. This tight coupling between high-level symbolic rea-
soning and grounded visual perception is what enables the framework’s 
superior error recovery and adaptability, marking a significant depar-
ture from open-loop planners or methods that rely on less expressive 
state representations.

The remainder of this paper is organized as follows: Section 2 
provides a detailed overview of related work in deformable object 
manipulation, foundation models for task planning, and visual imita-
tion learning. Section 3 presents the problem statement and system 
description. Section 4 introduces our integrated framework, describing 
the hierarchical combination of LLM-driven symbolic planning and im-
itation learning, including subgoal generation, the goal-oriented state 
query module, and low-level action generation via diffusion policy. 
Section 5 presents the experimental setup, evaluation protocol, and 
a comprehensive analysis of results. Finally, Section 6 concludes the 
paper and discusses future research directions.

2. Related work

2.1. Pre-trained foundation models for task planning

Early research efforts [20–22] have shown that large language 
models (LLMs) possess strong capabilities for tackling long-horizon 
planning problems, functioning effectively as high-level task planners. 
In contrast, traditional symbolic planning methods, such as those based 
on PDDL, rely on efficient search techniques to discover valid or 
optimal plans, but their flexibility is limited by the need for predefined, 
structured task specifications. More recent work [23,24] has sought to 
bridge this gap by combining LLMs with classical planners: LLMs are 
used to generate structured task descriptions, which are then input into 
PDDL-based planners to search for optimal solutions.

The integration of multimodal data has further expanded the scope 
of planning research. Unlike traditional methods that often rely on 
hand-engineered features or state estimators which can be brittle in 
the face of visual variations, several recent studies have utilized vi-
sual language models (VLMs) [25–28]. These models leverage strong 
reasoning and in-context learning abilities to extract complex spatial 
relationships and object affordances directly from raw sensory input 
for planning [29–32]. For instance, approaches like VoxPoser [12] 
and Instruct2Act [27] have shown that VLMs can interpret ambiguous 
natural language commands and ground them in complex 3D environ-
ments, a task that remains challenging for classical planners. Despite 
these advances, VLMs are still often limited in their ability to capture 
the fine-grained spatial details crucial for high-precision manipulation, 
such as the exact position and orientation of objects. Rather than 
relying solely on structured priors, our approach addresses this by 
using VLMs for high-level semantic understanding while employing an 
explicit grounding mechanism for task-relevant state verification—such 
as confirming whether a generated grasp pose is physically feasible for 
the robot to execute. 
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2.2. Deformable object manipulation

Robotic manipulation of deformable objects (DOs) is incredibly 
challenging due to their complex, infinite-dimensional states [33–36]. 
While crucial for many applications like assembly and surgery, tra-
ditional approaches often struggle. Early model-based methods use 
precise physical models (e.g., FEM) for planning [37,38]. However, 
these are often computationally expensive and difficult to accurately 
build for real-world scenarios. Learning-based approaches like Rein-
forcement Learning (RL) and Imitation Learning (IL) bypass explicit 
modeling [39,40]. RL can learn complex behaviors but is sample-
inefficient and requires extensive reward engineering. IL, especially 
through behavior cloning, allows learning from demonstrations. While 
effective for short, specific tasks, scaling traditional IL to long-horizon 
deformable assembly with diverse goals is difficult due to compounding 
errors and a lack of high-level planning. Some hierarchical imitation 
learning attempts have been made, but they often lack robust abstract 
task representation. Despite advances in hybrid methods, robustly han-
dling multi-step, long-horizon deformable object assembly—especially 
when strategic deformation is integral to the task—remains a signifi-
cant open problem. Our work directly addresses this gap by integrating 
high-level intent with low-level execution.

2.3. Visual imitation learning

Imitation learning has become a prominent approach for enabling 
robots to acquire human-like abilities, leveraging large datasets of 
observation-action pairs collected from expert demonstrations. Due to 
the inherent difficulties in precisely estimating object states in real-
world settings, visual modalities—particularly images—have become a 
reliable source of information. Although most existing methods have fo-
cused on 2D image-based policies [41–43], there is growing recognition 
of the value of 3D perception for robotic learning [44,45].

A new wave of 3D policy architectures, such as PerAct [46], 
RVT [47], ACT3D [44], and NeRFuser [48], have demonstrated strong 
performance in tasks characterized by low-dimensional control. Despite 
these advances, current 3D imitation learning frameworks face notable 
limitations. Firstly, many approaches reformulate the learning problem 
as one of prediction and planning, often extracting keyframe poses—
a strategy that is less effective when extended to more complex, 
high-dimensional tasks. Secondly, the computational overhead of these 
models leads to slow inference speeds. For example, PerAct operates at 
2.23 frames per second, which is insufficient for tasks that require rapid 
or continuous control in dynamic environments. Similarly, 3D Diffuser 
Actor [49] achieves only 1.67 FPS, primarily due to the overhead from 
attention mechanisms and differences in experimental setup.

In light of these challenges, our work aims to develop a versa-
tile and efficient 3D imitation learning policy. The goal is to sup-
port a wide range of robotic tasks, seamlessly scaling from high-
dimensional to low-dimensional control scenarios, while maintaining 
real-time performance.

3. Problem statement

This work addresses the challenge of enabling a single-arm robotic 
manipulator to autonomously complete long-horizon deformable ob-
ject assembly tasks for a round belt drive system, guided by human 
language instructions. Specifically, given a human demonstration tra-
jectory  and a visual observation 𝐼 (such as an image or point cloud), 
the objective is to generate a sequence of action primitives 𝑎1, 𝑎2,… , 𝑎𝑛
based on the current visual input 𝐼𝑡 such that the robot autonomously 
completes the specified manipulation task. At each time step, the 
system infers the current state 𝑠𝑡 from the available observations and, 
leveraging both learned policies and symbolic planning, decomposes 
the long-horizon task into a sequence of interpretable subgoals. Each 
3 
action primitive 𝑎𝑖 in the sequence is selected and executed to in-
crementally satisfy these subgoals 𝑔, ultimately achieving the overall 
assembly objective.

We formalize this as a symbolic planning problem, defined by the 
tuple ( , 𝑠𝑡, 𝑔,, 𝛾

)

:

• : The symbolic state space, representing a discrete set of world 
states. Each state 𝑠 ∈  is described by a set of predicates 
that capture the properties and relationships of objects in the 
environment.

• : The set of symbolic actions, where each action can take object 
instances as symbolic parameters and modify their properties 
accordingly.

• 𝛾: The symbolic state transition function, which maps the current 
state and an action to the next state.

• 𝑠𝑡 ∈ : The current symbolic state of the environment, inferred 
from perception and demonstration.

• 𝑔𝑛 ⊂ : The set of subgoal symbolic states, representing the 
desired outcome of the assembly process.

The planning task is described in PDDL (Planning Domain Defi-
nition Language), where the PDDL problem specifies the initial and 
goal states, and the PDDL domain defines the object types, predicates, 
symbolic actions, and transition dynamics. Each symbolic action in 
PDDL includes its parameters, preconditions, and effects.

In our framework, both the current state 𝑠𝑡 and the goal conditions 𝑔
are inferred from the human tele-operated demonstration  and visual 
perception 𝐼 . While the PDDL domain description is assumed to be 
predefined by a human expert, the reasoning over  and 𝐼 enables 
automatic extraction of task-relevant state representations and goals. 
Once the symbolic initial state, goal state, and transition function 𝛾
are specified, a symbolic planner is employed to compute the action 
sequence (𝑎1, 𝑎2,… , 𝑎𝑛) required to complete the round belt assembly 
task.

4. Methodology

Our proposed framework addresses long-horizon deformable ob-
ject assembly through a hierarchical integration of symbolic planning 
and imitation learning. As shown in Fig.  2 at the high level, we 
leverage human demonstrations, visual-language models (VLMs), and 
large language models (LLMs) to decompose complex assembly tasks 
into a sequence of interpretable symbolic subgoals. These subgoals 
are then mapped to executable robot actions via a low-level policy. 
For robust action generation, we employ a 3D Diffusion Policy (DP3) 
that conditions on both visual observations and symbolic subgoals to 
produce smooth and generalizable trajectories in complex manipulation 
scenarios. This tight coupling between high-level reasoning and low-
level control enables scalable, interpretable, and data-efficient solutions 
for long-horizon, deformable object assembly tasks.

4.1. Subgoal generation

To facilitate efficient long-horizon manipulation, we decompose 
the assembly task into a sequence of subgoals (see Table  1) via a 
combination of human demonstration, vision-language reasoning, and 
language model abstraction. First, a human tele-operated demonstra-
tion is performed for the round belt drive system assembly. Leveraging 
human knowledge and prior experience, we predefine a sequence of key 
image frames {𝐼∗1 , 𝐼∗2 ,… , 𝐼∗𝑁}, each capturing a crucial step or transition 
in the manipulation process: 
𝐼∗1 , 𝐼

∗
2 ,… , 𝐼∗𝑁 = 𝑓prior() (1)

where  denotes the demonstration trajectory and 𝑓prior represents the 
extraction of subgoal-related frames based on human priors.
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Fig. 2. Our Hierarchical Framework for Deformable Object Assembly, guided by LLMs and Imitation Learning. A human demonstration provides initial input. The framework then 
employs VLMs for sub-goal generation and LLM–VLM interaction for state querying and answering. A symbolic planner, utilizing PDDL, creates high-level task plans. Finally, a 
low-level action generator (DP3) executes the detailed manipulation actions, allowing the robot to assemble the round belt drive system.
Next, we employ a Visual-Language Model (VLM) to infer descrip-
tive subgoal texts {𝑔̃1, 𝑔̃2,… , 𝑔̃𝑁} from these key frames: 
𝑔̃1, 𝑔̃2,… , 𝑔̃𝑁 = 𝑓VLM(𝐼∗1 , 𝐼

∗
2 ,… , 𝐼∗𝑁 ) (2)

The VLM bridges visual perception and natural language, providing 
concise subgoal descriptions that correspond to each key step in the 
demonstration. Subsequently, we utilize a Large Language Model (LLM) 
to convert each subgoal description into a symbolic subgoal state 
{𝑔1, 𝑔2,… , 𝑔𝑁}: 
𝑔1, 𝑔2,… , 𝑔𝑁 = 𝑓LLM(𝑔̃1, 𝑔̃2,… , 𝑔̃𝑁 ) (3)

Here, the LLM leverages in-context learning (ICL)—a powerful capa-
bility that enables the model to perform new tasks by conditioning 
on a prompt containing a handful of instruction-subgoal decomposi-
tion examples, without requiring any additional training or parameter 
updates. By providing a carefully constructed prompt with several 
annotated demonstrations, the LLM dynamically learns to generalize 
the subgoal abstraction process to novel instructions and scenarios.

By this hierarchical process, the high-level assembly task is modu-
larized into a sequence of symbolic subgoal states, each representing 
a key transitional condition in the environment. This decomposition 
simplifies planning and enables incremental, interpretable robot control 
for long-horizon assembly.

4.2. Goal-oriented state query module

To acquire the symbolic state 𝑠𝑡𝑙𝑖  relevant to each subgoal, we first 
input the decomposed subgoal into a large language model (LLM). 
The LLM analyzes the subgoal to determine the essential pieces of 
information required for its completion. For example, given the subgoal 
‘‘Lift the belt into the air and position it around the larger pulley’’, the 
LLM identifies key checkpoints such as whether the belt is currently 
grasped and if it is in proper contact with the large pulley. In-context 
learning (ICL) is applied to guide the LLM in extracting these specific 
state queries based on provided examples.
4 
Fig. 3. Illustration of the LLM-driven state query and VLM-based answering mechanism 
within our framework. For a given sub-goal (e.g., ‘‘Lift the belt into the air and position 
it around larger pulley’’), the LLM generates specific queries about the current state 
(e.g., ‘‘Is the belt grasped?’’, ‘‘Is the belt in proper contact with the large pulley?’’). 
A Visual-Language Model (VLM) then processes the visual input to provide accurate 
answers to these queries (e.g., ‘‘The belt is grasped’’, ‘‘The belt is in proper contact 
with the larger pulley?’’), enabling robust state perception for planning and execution.

Once the relevant state queries are formulated by the LLM, a visual-
language model (VLM) is employed to ground these queries in the 
robot’s perception. The VLM receives both the linguistic state queries 
and visual data from the robot’s sensors, enabling it to directly assess 
the status of task-relevant objects and spatial arrangements within the 
environment (see Fig.  3).
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Table 1
Symbolic states for each assembly key step (Subgoal).
Subgoal state Symbolic state representation

Initial state
(on_table red_belt)
(free red_belt)
(free arm)
(idler_at idler1 initial_position)

Grasp the red 
round belt from 
the table.

(holding arm red_belt)
(not (on_table red_belt))
(free red_belt)

Lift the belt and po-
sition it around the 
large pulley.

(holding arm red_belt)
(belt_positioned_on red_belt pulley_large)

Seat the belt prop-
erly in the groove 
of the large pulley.

(holding arm red_belt)
(belt_seated_on red_belt pulley_large)

Guide the belt 
around the small 
pulley and seat it 
properly.

(holding arm red_belt)
(belt_seated_on red_belt pulley_large)
(belt_seated_on red_belt pulley_small)

Release the belt 
and lift gripper and 
move to the idler.

(free arm)
(not (holding arm red_belt))
(belt_seated_on red_belt pulley_large)
(belt_seated_on red_belt pulley_small)

Move the idler 
along the seam and 
ensure the belt is 
properly seated on 
the idler.

(free arm)
(belt_seated_on red_belt pulley_large)
(belt_seated_on red_belt pulley_small)
(belt_seated_on_idler red_belt idler1)
(idler_at idler1 seam_position)
Rather than requesting broad scene or image descriptions from 
the VLM, we leverage targeted state queries, as demonstrated in the 
accompanying figure. For instance, to verify progress on the belt as-
sembly task, the system poses queries such as ‘‘Is the belt grasped?’’ 
or ‘‘Is the belt in proper contact with the large pulley?’’ This focused 
querying allows the VLM to deliver concise, task-specific answers, in-
creasing the precision and reliability of the state assessment compared 
to open-ended descriptions.

To adapt the VLM for this specialized querying, we fine-tune it—
using Sphinx as the backbone model—on a dataset generated in the 
Isaac Gym simulator. This dataset includes diverse scenarios and an-
notated state queries covering object accessibility, gripper status, and 
the condition of articulated objects. This enables the model to robustly 
answer whether objects are reachable, whether grippers are holding 
objects, and whether components such as pulleys or drawers are in the 
correct state, across a variety of assembly and manipulation contexts.

4.3. Low-level action generation via diffusion policy 3D

With a sequence of symbolic subgoals {𝑔1, 𝑔2,… , 𝑔𝑁} specified by 
the high-level planner, we must ground each subgoal in continuous, 
executable robot actions. To achieve robust and generalizable low-level 
control, we employ a 3D Diffusion Policy (DP3) as our visuomotor 
policy, leveraging a small set of expert demonstrations that capture 
complex skill trajectories in deformable object assembly (see Fig.  4).

DP3 consists of two key modules: perception and decision. In 
the perception module, the environment is observed through point 
cloud data acquired from different view depth cameras, which is pro-
cessed into compact 3D visual features. Point clouds are generated by 
converting depth images into 3D coordinates using camera intrinsics 
and extrinsics. To focus on task-relevant information and improve 
efficiency, points outside a bounding box around the workspace are 
cropped, and further downsampled via farthest point sampling (FPS). 
The resulting subset (typically 1024 points) is encoded into a 64-
dimensional vector 𝑜 using a lightweight MLP-based encoder with 
max-pooling and LayerNorm for stability.
5 
The decision module of DP3 is a conditional denoising diffusion 
model that generates action sequences conditioned on a symbolic sub-
goal 𝑔𝑛, current 3D visual feature 𝑜𝑡, the current robot pose 𝑞𝑡. The 
process starts from a random Gaussian noise vector 𝑎𝐾 and iteratively 
denoises it over 𝐾 steps to produce a noise-free action 𝑎0, following: 

𝑎𝑘−1 = 𝛼𝑘
(

𝑎𝑘 − 𝛾𝑘 𝝐𝜃(𝑎𝑘, 𝑘, 𝑔𝑛, 𝑜𝑡, 𝑞𝑡)
)

+ 𝜎𝑘 (0, 𝐈), (4)

where 𝝐𝜃 is the denoising network, and 𝛼𝑘, 𝛾𝑘, 𝜎𝑘 are schedule-
dependent coefficients. The DP3 policy is trained by minimizing the 
mean squared error between the predicted and true noise, using a 
diffusion process applied to expert action data: 

 = MSE
(

𝝐𝑘, 𝝐𝜃
(

𝛼𝑘𝑎
0 + 𝛽𝑘𝝐𝑘, 𝑘, 𝑔𝑛, 𝑜𝑡, 𝑞𝑡

))

, (5)

where 𝛼𝑘 and 𝛽𝑘 define the noise schedule for each diffusion step.
For each symbolic subgoal 𝑔𝑛, the DP3 policy 𝜋DP3 generates a 

sequence of low-level actions {𝑎𝑡, 𝑎𝑡+1,… , 𝑎𝑡+𝐾} conditioned on the 
current observation 𝑜𝑡 and subgoal: 

𝑎𝑡, 𝑎𝑡+1,… , 𝑎𝑡+𝐾 = 𝜋DP3(𝑜𝑡, 𝑔𝑛) (6)

DP3 demonstrates remarkable generalization from limited expert data, 
especially in 3D tasks that require precise manipulation in the presence 
of deformable objects. Its use of point clouds as the primary scene rep-
resentation allows the policy to generalize beyond the specific training 
configurations, as evidenced in prior benchmarks such as MetaWorld 
Reach.

Integration with Symbolic Planning. In our hierarchical frame-
work, the high-level PDDL planner (driven by LLM-generated symbolic 
subgoals) specifies the sequence of skill primitives and their associated 
symbolic states. For each subgoal, the DP3 policy is invoked to realize 
the required manipulation at the action level, ensuring smooth, tempo-
rally coherent, and robust execution of complex assembly steps. This 
tight coupling between symbolic reasoning and diffusion-based con-
tinuous control enables our system to tackle long-horizon deformable 
object assembly with both high-level interpretability and low-level 
dexterity.
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Fig. 4. The learning pipeline for low-level action generation. Human teleoperated demonstrations (a) provide the foundational data. The system’s perception module (b) processes 
multi-view point cloud data, reducing it to a compact 3D representation via layers including MLP, ReLU, and Max Pool. This compact representation, combined with robot state 
and environment information, forms the input for the decision module. The decision module employs a Conditional Diffusion Policy (b)[cite: 2], which iteratively refines a noised 
action (𝑎𝐾𝑡 ) through a denoising process to arrive at the final robot action (𝑎0𝑡 )[cite: 2], effectively translating perceived states and sub-goals into executable movements.
Fig. 5. Experimental setup for deformable object assembly tasks. The setup includes 
a Xarm-7 manipulator, a Task-board workspace, and three Cameras (Front view, 
side view1 and side view2) for visual feedback. The task involves assembling a
polyurethane round belt onto round belt pulleys and an idler with bearing, shown 
in both disassembled and assembled configurations.

Fig. 6. Three different initial task board configurations for the experiments: (a) the 
task board is in the standard orientation; (b) the task board is rotated 30 degrees 
clockwise; (c) one side of the task board is raised by 1 cm.

5. Experiment

5.1. Experimental setup

We evaluate our proposed framework on a physical robotic platform 
tailored for deformable object assembly, as illustrated in Fig.  5. The 
system comprises an Xarm-7 manipulator equipped with a two-finger 
gripper, enabling precise and dexterous manipulation. The workspace 
is defined by a custom Task-board, which incorporates all necessary 
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assembly components. To facilitate robust perception, three cameras 
(Front Camera, Side Camera 1, and Side Camera 2) are strategically 
arranged to provide comprehensive visual coverage for both the percep-
tion modules and experiment monitoring. The primary assembly task 
involves mounting a polyurethane round belt (4 mm diameter, 500 mm 
length) onto a system consisting of two round belt pulleys (48 mm 
and 60 mm nominal diameters) and an idler with bearing (30 mm 
OD). Fig.  5 depicts both the initial (disassembled) and final (assembled) 
states, reflecting the long-horizon and high-precision requirements of 
deformable object assembly.

5.2. Evaluation protocol

To systematically assess the robustness and generalizability of our 
framework, we consider three distinct initial task board configurations, 
as shown in Fig.  6: (a) standard orientation (STD), (b) rotated 30 
degrees clockwise (ROT30), and (c) one side elevated by 1 cm (TILT1). 
Both assembly and disassembly tasks are evaluated under each con-
dition. For each trial, the robot must complete the full assembly (or 
disassembly) sequence without human intervention. Additionally, in 
challenging cases (case 4 and 5), we introduce random human pertur-
bations by removing the red belt from the gripper during execution to 
evaluate the system’s error recovery ability.

We adopt the following quantitative metrics for evaluation:
• Success Rate: The proportion of trials in which the task is com-
pleted successfully.

• Completion Time: The average time taken to complete the as-
sembly or disassembly task.

• Error Recovery Rate: For cases involving external disturbances, 
the percentage of trials in which the system successfully recovers 
and completes the task after the belt is removed from the gripper.

To demonstrate the effectiveness of our method, we compare the 
following approaches:

• Ours (LLM-driven symbolic planning + DP3 diffusion policy): 
Our full hierarchical framework combining LLM-based high-level 
planning with diffusion-policy-based low-level control.

• LLM symbolic planning + DP3: Hierarchical planning using LLM 
with DP3, but without the state query mechanism.

• Flat Diffusion Policy (No Hierarchy): End-to-end DP3 policy 
without subgoal decomposition or symbolic reasoning.
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Table 2
Performance of different approaches on different initial settings for assembly tasks of round belt drive system.
 Method Success rate (%) Completion time (s)
 STD ROT30 TILT1 STD ROT30 TILT1  
 IBC-3D 13.3 ± 3.3 0.0 ±  0.0 2.2 ±  1.9 110.7 ± 7.3 / 103.8 ± 8.2 
 BCRNN-3D 16.7 ± 3.3 4.4 ±  1.9 11.1 ±  3.9 115.2 ± 6.5 123.9 ± 7.8 108.4 ± 7.1 
 Flat-DP3 24.4 ± 1.9 8.9 ±  1.9 10.0 ±  5.8 128.8 ± 4.7 135.6 ± 5.4 120.3 ± 5.9 
 LLM+DP3 63.3 ± 12.0 52.2 ±  17.0 51.1 ±  11.7 145.4 ± 3.8 160.6 ± 4.4 130.7 ± 4.3 
 LLM+DP3+Query (Ours) 73.3 ± 3.3 67.8 ± 1.9 63.3 ± 3.3 160.9 ± 1.6 180.2 ± 1.3 145.8 ± 1.9 
Table 3
Performance of different approaches on different initial settings for disassembly tasks of round belt drive system.
 Method Success rate (%) Completion time (s)
 STD ROT30 TILT1 STD ROT30 TILT1  
 IBC-3D 15.6 ± 1.9 1.1 ±  1.8 3.3 ±  3.3 62.4 ± 2.0 65.4 ± 2.1 59.3 ± 2.1 
 BCRNN-3D 24.4 ± 1.9 2.2 ±  3.9 14.4 ±  3.9 67.5 ± 2.5 71.1 ± 2.6 63.6 ± 2.2 
 Flat-DP3 31.1 ± 6.9 10.0 ±  3.3 24.4 ±  1.9 75.2 ± 1.7 80.1 ± 2.0 70.5 ± 1.5 
 LLM+DP3 62.2 ± 10.2 50.0 ±  15.3 61.1 ±  8.4 84.7 ± 1.3 89.2 ± 1.4 81.6 ± 1.2 
 LLM+DP3+Query (Ours) 84.4 ± 5.1 72.2 ±  5.1 68.9 ±  1.9 90.2 ± 0.8 94.3 ± 0.9 87.8 ± 0.7 
Fig. 7. Qualitative results for assembly and disassembly tasks of the round belt drive system using our LLM+DP3+Query approach under different initial experimental settings: 
(a) standard orientation (STD), (b) rotated 30◦ clockwise (ROT30), and (c) one side elevated by 1 cm (TILT1).
 

 

• IBC [41] + 3D: Baseline based on Implicit Behavior Cloning in a
3D visuomotor policy setting.

• BCRNN [50] + 3D: Baseline using a Bidirectional Convolutional
Recurrent Neural Network for low-level control.

5.3. Results and analysis

Assembly tasks. Table  2 reports the performance of all methods un-
der three initial settings (a) standard orientation (STD), (b) rotated
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30◦ clockwise (ROT30), and (c) one side elevated by 1 cm (TILT1) 
for the assembly tasks, and Fig.  7 shows qualitative results for as-
sembly and disassembly tasks of the round belt drive system using 
our LLM+DP3+Query approach under different initial experimental 
settings: (STD, ROT30, TILT1). Our method consistently achieves the 
highest success rates across all settings, reaching 73.3 ± 3.3% (STD), 
67.8 ± 1.9% (ROT30), and 63.3 ± 3.3% (TILT1). The strongest baseline, 
LLM+DP3, achieves lower rates in all cases (e.g., 63.3 ± 12.0% for STD, 
52.2 ± 17.0% for ROT30). Notably, classical learning-based methods 
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Fig. 8. Experimental results of error recovery in assembly tasks for the round belt drive system using our LLM+DP3+Query approach. The figure illustrates cases where, following 
external disturbances that remove the belt from the gripper, the system successfully recovers and completes the assembly task.
Table 4
Error recovery rate (%) of Different Approaches on Standard (STD) Initial Setting for 
assembly and disassembly tasks.
 Method Error recovery rate (%)
 Assembly Disassembly  
 IBC-3D 5.0 7.0  
 BCRNN-3D 36.0 38.0  
 Flat-DP3 52.0 56.0  
 LLM+DP3 73.0 78.0  
 LLM+DP3+Query (Ours) 89.0 92.0  

(IBC-3D and BCRNN-3D) perform much worse, especially under non-
standard settings, with IBC-3D even failing completely in the ROT30 
scenario.

In terms of completion time, our method takes moderately longer 
to finish each task (e.g., 160.9 ± 1.6 s for STD), which is expected 
given the additional reasoning and querying steps involved. How-
ever, this moderate increase is justified by the substantial boost in 
success rates and robustness. Across all methods, completion time 
follows the trend: TILT1 < STD < ROT30, indicating that rotational 
disturbances (ROT30) are more challenging than minor tilts (TILT1). 
Flat-DP3 provides moderate success rates, but consistently trails behind 
the LLM-based approaches, highlighting the importance of high-level 
language reasoning and hierarchical planning.
Disassembly tasks. Table  3 shows that our method again outperforms all 
baselines for disassembly, achieving 84.4 ± 5.1% (STD), 72.2 ± 5.1% 
(ROT30), and 68.9 ± 1.9% (TILT1) success rates. LLM+DP3 remains the 
strongest baseline, but the gap between our method and all baselines 
widens further in more challenging (ROT30, TILT1) scenarios.

Our approach also exhibits slightly higher completion times (e.g., 
90.2 ± 0.8 s for STD), again reflecting the overhead of more robust rea-
soning and error checking. Similar to assembly, all methods complete 
TILT1 scenarios faster than STD and ROT30, confirming that moderate 
tilts are less disruptive than large rotations. Classical baselines (IBC-3D, 
BCRNN-3D, Flat-DP3) show consistently lower success rates and are less 
robust to initial configuration disturbances.
Error recovery. Table  4 summarizes the error recovery rates under 
the standard initial setting for both assembly and disassembly. Our 
method achieves the highest recovery rates in both tasks (89% for 
assembly and 92% for disassembly), demonstrating strong robustness 
to execution errors. Fig.  8 shows corresponding experimental results of 
error recovery in assembly tasks using our LLM+DP3+Query approach. 
The figure illustrates cases where, following external disturbances that 
remove the belt from the gripper, the system successfully recovers 
and completes the assembly task. LLM+DP3 also performs well but 
is consistently surpassed by our approach. In contrast, prior learning-
based methods (IBC-3D, BCRNN-3D, Flat-DP3) exhibit significantly 
lower recovery rates, with IBC-3D almost always failing to recover.
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Overall, these results clearly demonstrate the effectiveness and ro-
bustness of our proposed method across both assembly and disassembly 
tasks, especially under challenging initial conditions. The integration 
of LLM-based reasoning and dynamic querying substantially improves 
both task success rates and error recovery, at the cost of only a mod-
erate increase in execution time. This trade-off is highly favorable for 
real-world applications where reliability and adaptability are essential.

6. Conclusion

This paper introduced a novel framework that effectively tackles 
long-horizon deformable object assembly by integrating LLM-driven 
symbolic planning with hierarchical imitation learning. We success-
fully leveraged LLMs for high-level task understanding and symbolic 
decomposition, while hierarchical imitation learning provided robust, 
precise control for complex deformations. Our extensive experiments 
demonstrated the framework’s superior performance in terms of success 
rates, task completion times, and generalization capabilities across var-
ious challenging scenarios. This work represents a significant advance 
toward more autonomous and intelligent robotic systems for manipu-
lating deformable materials in unstructured environments. Future work 
will focus on several key directions to build upon this foundation. 
First, we plan to further optimize the Visual-Language Model (VLM) 
by fine-tuning it on larger and more varied datasets of manipula-
tion scenarios. This will enhance its ability to answer state queries 
with higher precision, which is crucial for even more complex belt 
manipulation tasks. Second, we will work to extend the framework’s 
applicability beyond linear objects. A critical next step is to test its 
generalization on different categories of deformable objects, such as 
planar items (e.g., textiles) and volumetric objects (e.g., bags), which 
present unique manipulation challenges. Finally, to operate robustly in 
dynamic, real-world settings, we will focus on integrating deeper, real-
time visual feedback loops that can trigger dynamic re-planning. This 
would allow the system to intelligently adjust its symbolic plan and 
actions in response to unforeseen changes or perturbations, aiming for 
truly versatile and adaptive robotic manipulation.
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