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 A B S T R A C T

The ability to wield tools was once considered exclusive to human intelligence, but it is now known that 
many other animals, like crows, possess this capability. Yet, robotic systems still fall short of matching 
biological dexterity. In this paper, we investigate the use of Large Language Models (LLMs), tool affordances, 
and object manoeuvrability for non-prehensile tool-based manipulation tasks. Our novel method leverages 
LLMs based on scene information and natural language instructions to enable symbolic task planning for 
tool-object manipulation. This approach allows the system to convert a human language sentence into a 
sequence of feasible motion functions. We have developed a novel manoeuvrability-driven controller using a 
new tool affordance model derived from visual feedback. This controller helps guide the robot’s tool utilization 
and manipulation actions, even within confined areas, using a stepping incremental approach. The proposed 
methodology is evaluated with experiments to prove its effectiveness under various manipulation scenarios.
1. Introduction

Being able to use tools is a widely recognized indicator of intelli-
gence across species [1,2]. Humans, for instance, have demonstrated 
mastery of tool use for over two million years. The ability to use 
tools is invaluable as it extends an organism’s reach and enhances its 
capacity to interact with objects and the environment [1]. Being able 
to understand the geometric–mechanical relations between the tools-
objects-environments allows certain species (e.g., apes and crows [3]) 
to reach food in narrow constrained spaces. The same principles of 
physical augmentation and its associated non-prehensile manipulation 
capabilities also apply to robotic systems [4,5]. For example, by in-
strumenting them with different types of end-effectors, robots can (in 
principle) dexterously interact (e.g., push and flip) with objects of 
various shapes and masses akin to its biological counterpart [6–8] and 
can be applied to various domains, such as manufacturing [9–13]. 
However, developing this type of manipulation skill is still an open 
research problem. Furthermore, the complexity of planning tool-object 

I This article is part of a Special issue entitled: ‘AGI4RoboticsManufacturing’ published in Robotics and Computer-Integrated Manufacturing.
I  This work is supported in part by the Research Grants Council of Hong Kong under grant C4042-23GF, and in part by the National Natural Science Foundation 
of China (NSFC) under Grant No. 62403211.
∗ Corresponding authors.
E-mail addresses: pzhou@gbu.edu.cn (P. Zhou), dnavar@polyu.edu.hk (D. Navarro-Alarcon).

manipulation tasks, particularly in coordinating the actions of dual-arm 
robots, presents significant challenges. To address these complexities, 
we propose integrating Large Language Models (LLMs) to assist in plan-
ning and executing these intricate manipulations, thereby enhancing 
the robot’s ability to perform in diverse scenarios.

Building on the advancements in LLMs, this paper investigates their 
application alongside tool affordances and object manoeuvrability for 
non-prehensile tool-based manipulation tasks. Our novel method lever-
ages LLMs based on scene information and natural language instruc-
tions to enable symbolic task planning for tool-object manipulation. 
This approach allows the system to convert a human language sentence 
into a sequence of feasible motion functions. We have developed a 
novel manoeuvrability-driven controller using a new tool affordance 
model derived from visual feedback. This controller effectively guides 
the robot’s tool utilization and manipulation actions, even in a confined 
area, using our stepping incremental approach. The proposed method-
ology is evaluated with experiments to demonstrate its effectiveness 
under various manipulation scenarios.
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Fig. 1. Tool-Object manipulation in a dual-arm robotics system with environ-
mental constraints using the non-prehensile approach.

1.1. Related works

Effective tool utilization by a robot involves primarily two aspects: 
(1) task planning and (2) tool movement [14–16]. Task planning is 
typically regarded as a cognitive high-level process in robotics, mainly 
used for environmental reasoning, task decomposition, allocation of ac-
tion sequences, etc. [17]. Task can be decomposed with the integration 
of learning-based approaches, particularly through the use of rein-
forcement learning techniques to optimize task planning [18]. Studies 
have also highlighted the effectiveness of rule-based planning methods, 
which incorporate predefined heuristics and logical rules to enhance 
the efficiency of task decomposition in structured environments [19]. 
While rule-based planning is effective for well-defined problems, it can 
struggle with complex, dynamic environments where the number of 
rules may become unmanageable. However, recent trends have been 
pushing towards the use of LLMs to leverage the domain knowledge for 
semantically decomposing and planning the execution of manipulation 
tasks [20–28]. Some examples of these directions include [25,26], 
which developed an environmental feedback-based system for context-
aware improvement planning. Leveraging the generative capabilities of 
LLMs, motion sequences can be generated for robots as demonstrated 
in [27,29,30]. The combination of traditional motion planners with 
LLMs has been explored in [20]. Domain knowledge can be integrated 
with LLMs to generate a list of motions for navigating a robot in an 
apartment, as demonstrated in [21]. However, the focus primarily re-
mains on independent motions. Motivated by [21], we further consider 
the dependent motion among arms and tools.

Transitioning from the critical role of task planning, it is evident 
that effective tool use is inherently tied to understanding the rela-
tionship between tools and objects [31]. Indeed, the success of a 
given tool-object manipulation task largely depends on the appropriate 
selection of the tool, which necessitates a nuanced comprehension 
of how tools interact with various objects in their environment. For 
example, robots can identify the tool type, potential uses, and contact 
approaches based on the tool’s geometry, see e.g., [2,14]. In [32], 
tool features are learned through observation of the task’s effects and 
experimental validation of feature hypotheses. Affordance models are 
a common technique used for tool feature selection [33–35] and tool 
classification [35–37]. The relation between tool actions and their 
effects on objects is explored in [37,38], where robots acquire affor-
dance knowledge through predefined actions (e.g., pull, push, rotate). 
Recently, researchers have also explored the use of LLM in acceler-
ating affordance learning in tool manipulation [2]. Some works have 
studied tool-based manipulation under constraints and from demon-
strations [39]. Non-prehensile object manipulation strategies have been 
used in [40,41].

Building on this foundation of understanding tool-object interac-
tions, it is important to highlight that, despite the advancements in 
robotic tool use, collaborative tool-based object manipulation by dual-
arm systems based on non-prehensile actions remains an underexplored 
problem. Notably, the challenge of applying incremental control on 
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the stepping motion of the tool within a confined area has not been 
well-addressed by previous studies [2,14,31–39,42]. Furthermore, most 
studies have primarily focused on task decomposition for simple object 
manipulation using LLMs, with tool manipulation being rarely ad-
dressed. Dual-arm collaborative manipulation utilizing non-prehensile 
tools represents a promising area for further exploration. In other 
words, the integration of LLMs in tool-object manipulation with dual-
arm robots remains underexplored. This specific challenge continues to 
present an open opportunity in the field.

1.2. Contributions

To address this research gap, we propose a novel LLM-based
manoeuvrability-driven method with the following key contributions: 
(1) We develop a geometric–mechanical model that explicitly captures 
the interaction between tools and objects, enabling accurate representa-
tion of their manoeuvrability in various manipulation scenarios; (2) We 
introduce a non-prehensile manipulation strategy tailored for tools, al-
lowing efficient object manipulation under various spatial and physical 
constraints without the need for grasping; (3) We conduct real-world 
experiments on a dual-arm robotic system, validating the proposed 
methodology through performance evaluations and demonstrating its 
practical applicability in dynamic environments.

Our approach uniquely integrates LLMs to enhance tool-object in-
teractions, enabling robots to interpret and perform complex non-
prehensile tasks through natural language instructions. This integration 
not only improves dynamic adaptability to different manipulation sce-
narios but also promotes more intuitive human–robot collaboration, 
increasing the effectiveness of dual-arm tool-object manipulation.

The rest of the manuscript is organized as follows: Section 2 presents 
the methodology, Section 3 presents the results, Section 4 discusses 
advantages, limitations, and gives final conclusions.

2. Methodology

2.1. Problem formulation

Consider a dual-arm robotic system using a tool to manipulate a 
block at a far distance (see Fig.  1). Given the input is a free-form lan-
guage task 𝐋 (e.g., ‘‘move the block to Point B’’), we apply a high-level 
symbolic planner (i.e., an LLM) to decompose the task into multiple 
subtasks 𝐥𝑖, 𝐋 = {𝐥1, 𝐥2,…} where 𝐋 contains a list of pre-defined motion 
functions 𝐥𝑖.

We define a tool as a manipulable object that is graspable by a robot, 
a manipulandum [14] as an object (e.g. a block) that is manipulated 
via a tool, and a wall as a static non-manipulable object. Tool use 
by robots is challenging as the tools can have various shapes, the 
environment can be dynamic, and the contact between the tool and 
the manipulandum may be hard to maintain in a long-horizon task. 
In this study, we focus on using the side part of a tool to interact 
with the manipulandum. Depending on the geometric features of a tool 
and a wall, the available affordance for manoeuvring a manipulandum 
may be different. Affordance here refers to the available action-effects 
offered by the tool or the environment. In this work, we classify 
affordance into two types: active and passive. Active affordance is given 
from a manipulable object, i.e. a tool, and it is directly related to the 
manoeuvrability when driving a manipulandum. A passive affordance 
is given by a static non-manipulable object.

To derive our methodology, the following setup assumptions are 
made: (1) The manipulation motion is planar, (2) the size of the 
manipulandum is not larger than any one of the segments of the tool, 
and (3) the manipulandum has a simple, regular geometric shape, such 
as circular or hexagonal. Throughout this paper, ‘‘tool-based object 
manipulation’’ is denoted as TOM, and ‘‘tool-based object manipula-
tion under environmental constraints’’ is denoted as TOME. Also, 𝐩◦
represents the 2D pose of an object ◦. The complete architecture of our 
method is depicted in Fig.  2.
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Fig. 2. (a) The task environment includes a camera for real-time top-view capturing, a dual-arm robot, tool(s), and a blue manipulandum to be manipulated 
to the target location. (b) The architecture of our system: Unstructured data input is converted to a subtask list in the symbolic task planner with an LLM, a 
manoeuvrability-driven planner to compute the tool’s manoeuvrability and generate an affordance-oriented motion and path. (c) Execution process of the result 
given by the system: dual-arm robots take turns pushing the blue manipulandum from one side to another via collaboration.
2.2. LLM-based high-level symbolic task planner

To obtain a valid task decomposition for a long-horizon task, the 
system needs to understand the requirements and generate an exe-
cutable subtask list. We develop a symbolic task planner that takes 
natural language instructions with scene descriptions as input, and 
outputs a list of high-level subtasks. The list involves the tool selec-
tion/sharing between two arms, the sequence to manipulate the tool 
with the manipulandum, and the interaction between the two arms. 
The model is fine-tuned using approximately 20,000 example data 
lists, specifically tailored for our non-prehensile tool object manipu-
lation scenario. During the fine-tuning stage, we utilized a program 
to create 20,000 distinct environmental setups by randomly varying 
the poses of the robot, tool, block, and target within a finite combi-
nation space. To ensure data quality and optimality, each generated 
setup was validated using rule-based filters that enforced logical and 
task-relevant constraints, ensuring that only feasible and meaningful 
manipulation scenarios were retained. This strategy produced a dataset 
covering both common and rare configurations, enabling the LLM to 
learn robust mappings between scene layouts and corresponding task 
plans. By framing task decomposition as a classification problem, the 
LLM can effectively associate each setup with a specific list of motion 
functions. This design enhances its ability to generate consistent, phys-
ically grounded predictions and reduces the likelihood of producing 
hallucinated or infeasible task sequences.

The system interprets the provided high-level task 𝐋, which can 
have a structure like ‘‘Please move the blue block to the right-hand 
side’’, ‘‘Can you push the block to the target?’’, etc. Visual information 
of the scene is grounded to the system from the observation data 𝐨, 
where 𝐨 is composed of a series of data points, such as the pose of the 
block (manipulandum), tools, robots, and walls. The system embeds 
the environmental information with the task instruction to produce 
a desired configuration requirement, denoted as {𝐩obj,𝐩target,…} ←
𝑓 (𝐋, 𝐨) where 𝑓 (𝐋, 𝐨) is the embedded result.

The LLM interprets the output of 𝑓 (𝐋, 𝐨) to generate a subtask 
list {𝐥1, 𝐥2,…} ← 𝑓llm(𝑓 (𝐋, 𝐨)) where 𝐥𝑖 is a subtask describing the 
manipulation phase of each robot and corresponds to a high-level 
robot motion function. The motion functions are designed to be simple 
and specify a short-term goal of the concerned object (these functions 
omit low-level motion commands). For simplicity, here we use m to 
represent the manipulandum in the following function definitions. We 
use grasp(arm, tool) for grasping a tool with the robot arm;
approach(arm, tool, m) for approaching the location of m with
tool using arm; interact(arm, tool, m, goal) for moving m
3 
to the goal location with the tool; stepping(arm, tool, m) for 
moving m out from the bounded area with the tool of the arm through 
contact pulsing motions; pass(arm1, tool, m, arm2) for passing
m to another arm’s workspace; release(arm, tool) for releasing 
the tool back to its original place with the arm.

A sample motion task with a dual-arm robot is given as:
{pass(right, hook, block, left); approach(left,
stick, block); interact(left, stick, block, target); 
. . . } ← 𝑓llm(𝑓 (𝐋, 𝐨)) where both arms take turns manipulating the block. 
The right arm passes the block to the left by pushing it to an area where 
both arms can reach it. The left arm approaches the block with a stick 
and manipulates the block to the target. To this end, the symbolic task 
planner converts the unstructured data to a series of motion functions, 
including robot motion, tool planning, manipulation sequence, and 
collaboration.

2.3. Visual affordance model

Tools can have various shapes and complex structures. In this paper, 
we focus on the following tool geometries: a stick, an L-shaped hook, 
and a Y-shaped hook. Affordances are related to the geometric features 
of a tool. To analyse the possible affordances, we divide the tool into 
smaller segments (i.e. a line), and denote them as 𝐒 = {𝐬1, 𝐬2,… , 𝐬𝑛}
where 𝐬𝑖 and 𝐬𝑖+1 are segments next to each other. We compute the 
normal vectors of the segment at the middle point and scale them 
by half of the segment’s length. This is done to weigh the affordance 
effect this region carries. There are two affordance vectors per segment 
𝐬𝑖, each pointing in opposite directions, as depicted in Fig.  3(a). Let 
us define 𝐀 = {𝐚1, 𝐚2,… , 𝐚2𝑛} as the structure that contains all the 
affordance vectors 𝐚𝑖, for 𝑛 as the number of segments.

To determine which affordance vector 𝐚𝑖 will be used to interact 
with the manipulandum, we compare the similarity between 𝐚𝑖 and the 
vector from the manipulandum’s position to the target point 𝐯target by:

𝜃𝑖 = cos−1
( 𝐯target ⋅ 𝐚𝑖
‖𝐯target‖‖𝐚𝑖‖

)

(1)

where 𝜃𝑖 is the similarity score. The optimal affordance vector 𝐚∗ and 
its according segment 𝐬∗ are found by: 

𝐚∗ = argmin
𝐚

(𝛩) for 𝛩 = {𝜃1, 𝜃2,…} (2)

where the vector with the minimum similarity score is the optimal 
affordance vector.
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Fig. 3. (a) Affordance vectors are shown in pink arrows. Grey arrow is 
𝐯target and the desired affordance vector is denoted as 𝐚∗. (b) shows the 
manoeuvrability analysis flowchart: affordance area is visualized with the 
Gaussian function in yellow and blue; expand and downsample the tool’s shape 
to get key points 𝐏key (green colour dots); combine the affordance area with the 
key points 𝐏key to get the non-redundant points 𝐏⋄ (red dots), and combine the 
affordance 𝐚∗ found in (a) to obtain the position for the manipulandum to be 
at with the tool (labelled as 𝐩∗ with a red dot) and the highest manoeuvrability 
region is shown with a dashed red circle.

2.4. Manoeuvrability analysis

A tool can push the manipulandum from the side, from the tip, or 
from other areas. However, the relative location of the manipulandum 
with respect to the tool affects its manoeuvrability. In other words, 
the affordance provided by the tool is proportional to manoeuvrability. 
Consider using a rotating stick to push an object with its end tip. In 
this situation, the tool may lose contact with the manipulandum as it 
rolls outwards; hence, the manoeuvrability of this point is low. On the 
other hand, the midpoint of the stick has a high manoeuvrability, which 
proportionally decreases as the contact point is further away from the 
midpoint. This behaviour can be modelled with a Gaussian function, 
where its centre is the segment’s centre and the peak height is half the 
segment’s length, see Fig.  3(b). We refer to this region as an affordance 
area.

All the pixels in the affordance area of 𝐬𝑖 are set to 1 in an image 
frame 𝐈𝑖 and the rest to 0, which creates a binary image; This process 
is repeated for all segments. All binary images are then summed as: 

𝐈̂ =
𝑛
∑

𝑖=1
𝐈𝑖, [𝐈]𝑥,𝑦 =

{

1, if it is an affordance area
0, else

(3)

where 𝑛 is the number of segments. The affordance of the tool seg-
ment is quantified with the (normalized) manoeuvrability matrix: 𝐌 =
𝐈̂∕𝐼max, for 𝐼max as the maximum value in 𝐈̂.

Tool regions with high values in the image 𝐌 reflect a high ma-
noeuvrability. These computed manoeuvrability values are useful to 
determine the location where the tool interacts with the manipulan-
dum. To determine the centre of the object, we then expand the contour 
of the tool by the object’s radius 𝑟obj. This contour is downsampled with 
the Ramer–Douglas–Peucker algorithm, then parameterized with the 
spline fitting technique. To extract key features of the tool geometry, 
we use a sliding window strategy to examine a small number of 
neighbouring points. Let  be the contour of the tool expanded by 𝑟obj. 
The key features of the tool geometry are extracted using the following 
equation: 
 = {𝑝 ∈ |𝜅(𝑝) > 𝜅thresh} (4)

where  is the set of feature points, 𝑝 represents a point on the 
parameterized contour , 𝜅(𝑝) is the curvature of the point 𝑝, and 𝜅thresh
is a predefined curvature threshold. If there exists a point where its 
curvature is larger than a threshold in the local neighbourhood, we 
consider this point as one of the feature points.

To compute the minimal number of key points (denoted as 𝐏key =
{𝐩key1 ,𝐩key2 ,…}) that capture the highest manoeuvrability among fea-
ture points, we use the density-based clustering algorithm. By integrat-
ing the affordance areas we obtained earlier, we can filter out some 
redundant key points. For example, if there exists a point 𝐩key𝑖  located 
outside the affordance area (visualized in Fig.  3(b)), we consider this 
4 
Fig. 4. (a) The tool is virtually aligned to the current object and the goal 
location, with 𝐩∗ = 𝐩𝑜𝑏𝑗 and 𝐩∗ = 𝐩𝑔𝑜𝑎𝑙. (b) The light blue dashed line is the 
radius of the orange circle 𝐂start and 𝐂end, which equals the distance between 
𝐩𝑡𝑜𝑜𝑙 and 𝐩∗. The tool moves from 𝐩intstart to 𝐩intend by following the dark blue 
dashed trajectory line.

point as redundant. All the non-redundant points are then grouped 
into 𝐏⋄ = {𝐩⋄1 ,𝐩

⋄
2 ,…}. To find the point in 𝐏⋄ with the highest 

manoeuvrability (defined as 𝐩∗), we use the manoeuvrability matrix 𝐌
and distance between 𝐩⋄𝑖  and 𝐚∗ as described in the metric below: 

𝐩∗ = argmin
𝐩⋄𝑖

((1 − [𝐌]𝐩⋄𝑖 ) + ‖𝐩⋄𝑖 − 𝐚∗‖) (5)

where [𝐌]𝐩⋄𝑖  denotes to the image value of 𝐌 at point 𝐩⋄𝑖 . The region 
with the highest manoeuvrability is defined as the circle (with object 
radius) centred at 𝐩∗. (see Fig.  3(b))

2.5. Manoeuvrability-oriented controller

The subtask ‘‘𝚒𝚗𝚝𝚎𝚛𝚊𝚌𝚝’’ triggers the robot to use the selected tool to 
drive the manipulandum towards the desired location. In this section, 
we derive our method to perform this type of motion assuming that the 
tool approaches the object and is going to make contact with it in the 
subtask ‘‘𝚒𝚗𝚝𝚎𝚛𝚊𝚌𝚝’’.

2.5.1. Initial and final poses
The tool’s pose corresponds to its grasping configuration, which 

coincides with the robot end-effector’s pose when the robot grasps the 
tool (see Fig.  4). 𝐩tool denotes the tool’s grasping point (𝑥, 𝑦 coordinates) 
when it has not come in contact with the object. To construct a 
trajectory for tool-based object transport, we need to find out the tool’s 
desired initial and final poses for the subtask ‘‘𝚒𝚗𝚝𝚎𝚛𝚊𝚌𝚝’’. We first 
define these poses (which include the orientation) of the chosen tool 
as 𝐩intstart and 𝐩intend respectively.

To efficiently move the object, we propose a method that reduces 
the travel distance while ensuring continuous contact. In the first 
contact, we align the highest manoeuvrability point 𝐩∗ of the tool to 
the object’s centre 𝐩obj, where 𝐩∗ = 𝐩obj.

The motion trajectory of a tool, moving along the 𝑧-axis of the 
object’s centre without displacing it can be described as a circular 
trajectory with the centre 𝐩obj and radius 𝑟, where 𝑟 = ‖𝐩∗ − 𝐩tool‖. 
The trajectories for the initial and final configurations are represented 
as 𝐂start and 𝐂end (see Fig.  4(a)).

The possible location for 𝐩int,x,ystart  will be lying on 𝐂start and can be 
determined by finding a point on 𝐂start which is the closest point to the 
robot (the distance is indicated with a light green dashed line in Fig. 
4(b)). Based on the tool’s geometry, we can determine the orientation 
of the initial pose 𝐩intstart; The same approach applies to 𝐩intend.

2.5.2. Motion strategy
To stably move from 𝐩intstart to 𝐩intend, the following motion strategy is 

implemented to achieve the task: First, the robot aligns 𝐩∗ with 𝐩obj
and matches 𝐩tool with 𝐩intstart with the following equation: 

𝐩tool = argmin(𝑓 (𝐩)) + ‖𝐩 − 𝐩intstart‖ (6)

𝐩



H.-Y. Lee et al. Robotics and Computer-Integrated Manufacturing 100 (2026) 103231 
Fig. 5. (a) Walls are in red with the segment of the wall 𝐬wall𝑖  highlighted in 
black; blue arrows are the passive affordance vector and green arrows indicate 
the moving direction of 𝐯exit. (b) The tool pose moves from 𝜏 to 𝜏+1 by rotating 
with ∠rot and translating linearly to 𝐩ee𝜏+1. (c) Rotation direction of a tool: anti-
clockwise and clockwise direction.

where the coordinates of 𝐩tool can be determined by finding a point 
𝐩 = (𝑥, 𝑦) where it minimizes the distance between (𝐩∗,𝐩obj) with 𝑓 (𝐩)
and (𝐩tool,𝐩intstart); then translates along the 𝑥 and 𝑦 axes until it reaches 
𝐩int,x,yend  with 𝑘int(𝐩int,x,yend − 𝐩tool), where 𝑘int is determined empirically; 
lastly, the tool is rotated to align with the orientation of 𝐩intend.

2.6. Application with environmental constraints

When moving an object across a table, we may encounter con-
straints from the environment, such as walls. These constraints restrict 
the potential movement directions of the object. Formally, a con-
strained area can be defined by a series of points where more than one 
axis of freedom of the manipulandum motion may be restricted. In this 
section, we focus on the motion triggered by the subtask ‘𝚜𝚝𝚎𝚙𝚙𝚒𝚗𝚐’.

Consider the manipulandum is tightly confined within a concave-
shaped wall, as shown in Fig.  5(a), with an unknown exit and assume 
that the tool can enter the constrained area. To move the manipu-
landum out of the bounded area with a small movement space, we 
determine the direction from the manipulandum to the exit by con-
sidering the overall affordance of the wall boundary. We denote this 
direction vector as 𝐯exit, and its magnitude is defined as the minimum 
travel distance for the manipulandum. Consider the inner edge of the 
wall as a segment 𝐬wall𝑖  where 𝑖 = {1,… , 𝑛wall} and 𝑛wall is the number 
of the wall segment. The affordance of a wall is passively provided and 
is defined as 𝐚wall𝑖  with the model shown in Section 2.3. The passive 
affordance vector is the normal vector of 𝐬wall𝑖  located in the middle 
with the direction pointing towards the constrained area. Its magnitude 
is scaled to half of 𝐬wall𝑖  as the manipulandum is generally not receiving 
any affordance from a wall segment based on our visual affordance 
model. The moving direction for the manipulandum to the exit can be 
obtained by the following equation: 

𝐯exit =
𝑛wall
∑

𝑖=1
𝐚wall𝑖 + 𝐩obj (7)

where 𝐯exit integrates all passive wall affordance vectors 𝐚wall𝑖  with the 
current position of the manipulandum, see 5(a).

Given that only part of the tool can enter the confined area, our 
primary focus is the tip of the tool. The segment connecting of the tool’s 
tip is denoted as 𝐬tip, with its corresponding affordance vector denoted 
as 𝐚tip. The desired rotation angle of the end pose of 𝐚tip is the angle of 
𝐯exit.

The highest manoeuvrability region can be obtained by treating 
𝐯exit as the target vector 𝐯target, 𝐚tip as the desired affordance 𝐚∗, and 
assuming the tool is rotated such that 𝐚tip = 𝑏𝐯exit with 𝑏 > 0 as a 
scaling factor. We first align 𝐬tip to the first segment of the wall (i.e. 𝐬1), 
with 𝐩obj inside the highest manoeuvrability region of the tool. The tool 
approaches the object and maintains contact with the manipulandum 
by minimizing the distance ‖𝐩 − 𝐩obj‖.
∗

5 
To move in the limited area while interacting with the manipulan-
dum, we employ a stepping approach to manipulate the manipulandum 
in the confined area. As the possible movement area is small and 
highly restricted, an incremental pulsing motion is adopted to make 
small adjustments with high accuracy motion control to the tool and 
the manipulandum. Inspired by the animal manipulation study in [3] 
(where a crow uses a tool to get the food from the box slot by rotating 
and dragging the tool outwards), we adopt a similar approach to 
retrieve the object from confined spaces. This strategy continuously 
alternates between ‘‘repositioning’’ the tool and incremental ‘‘rotation-
dragging’’ the object towards the exit until it can be fully extracted as 
depicted in Fig.  5.

We define ‘‘repositioning’’ as moving the tool closer to the object 
and realigning 𝐩∗ with 𝐩obj by 𝑘 amount. The value of 𝑘 is determined 
empirically, representing the spatial offset between the tool and the 
object. A larger 𝑘 allows a wider clearance before contact, while a 
smaller 𝑘 brings the tool closer, increasing precision but also the risk 
of collision. In ‘‘rotation-dragging’’, the tool maintains contact with the 
manipulandum when it rotates by a certain angle as ∠rot shown in Fig. 
5(b) and moves outwards by extending ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐩ee𝜏 𝐩eerot by a 𝑤 > 0 amount. 
If ∠rot or 𝑤 are excessively large, the tool may jam or cause damage 
in the constrained area; conversely, values that are too small reduce 
efficiency by requiring more iterations to complete the manipulation. 
It is a trade-off between maintaining stability and achieving motion 
efficiency.

𝜏 is an action step variable and is incremented by 1 if an action 
(reposition/rotation-dragging) is fulfilled (i.e. 𝜏 = 0, 1, 2,… ). To control 
the change of action, a step function (denoted as 𝑢(𝜏)) is implemented 
as a trigger with the step variable 𝜏. This kind of non-prehensile 
crow-inspired behaviour can be unified and modelled as:

𝐩ee𝜏+1 =
⎡

⎢

⎢

⎣

𝐩ee,𝑥𝜏
𝐩ee,𝑦𝜏
𝜙𝜏

⎤

⎥

⎥

⎦

+ 𝑢(𝜏)
⎡

⎢

⎢

⎣

𝑘(𝐩𝑜𝑏𝑗,𝑥𝜏 − 𝐩𝑥∗)
𝑘(𝐩𝑜𝑏𝑗,𝑦𝜏 − 𝐩𝑦∗)

0

⎤

⎥

⎥

⎦

+ 𝑢(𝜏 + 1)

⎡

⎢

⎢

⎢

⎣

𝑤(𝐩obj,𝑥𝜏 − 𝑟 cos(𝜙𝜏 ) − 𝐩ee,𝑥𝜏 )
𝑤(𝐩obj,𝑦𝜏 + 𝑟 sin(𝜙𝜏 ) − 𝐩ee,𝑦𝜏 )

𝑓 (𝜙𝜏+1)

⎤

⎥

⎥

⎥

⎦

𝑢(𝜏) =

{

0, if 𝜏 is odd
1, if 𝜏 is even (8)

where 𝐩ee𝜏+1 is the next target pose of the end-effector at the action 
step 𝜏 + 1 for the affordance vector 𝐚tip not parallel to 𝐯exit, such that 
𝐚tip ≠ 𝑏𝐯exit. The angle of the tool at 𝜏 + 1 (denoted as 𝜙𝜏+1) depends 
on the rotational direction (see Fig.  5), that 𝜙𝜏+1 is computed as 

𝑓 (𝜙𝜏+1) =

{

− ∠obj − ∠rot, if direction is anti-clockwise
− 𝜙𝜏 + 𝜋 − ∠obj − ∠rot, otherwise

(9)

where 𝜙𝜏 is the tool’s angle at the action step 𝜏, ∠obj is the angle 
between the manipulandum, grasping point, and a tool’s keypoint, ∠rot
is the amount of angle to rotate.

3. Results

To evaluate the proposed framework in terms of accuracy, ro-
bustness, and practical feasibility, approximately 200 experiments are 
conducted using a dual-arm UR-3 robotic system. The fine-tuning of the 
large language model (GPT-4o-mini) is performed in the cloud on GPU-
enabled servers, and during deployment, the robotic system accesses 
the trained model through a secure API connection for inference. Three 
types of tools are selected, which are a stick, an L-shaped hook, and 
a Y-shaped hook (see Fig.  1). Different combinations of these tools 
were evaluated under diverse movement directions and task objectives. 
Various masses of the manipulandum are tested, but due to the minimal 
impact on the vision-based controller, mass is excluded from this 
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Fig. 6. Single-arm robot with a single tool: moving the manipulandum (a) 
right to left with a hook, (b) right to left with a stick, and (c) bottom to top 
with a Y-shaped tool. The red line shows the manipulandum’s trajectory, while 
the red circle indicates the highest manoeuvrability point.

section. The experimental tasks covered a wide range of scenarios, 
including close-range manipulation with single and multiple tools, 
long-horizon (single and tool-sharing) operations, and manipulation 
within constrained environments. An Intel RealSense D415 captures the 
images of the whole process. Data is passed to a Linux-based computer 
with the Robot Operating System (ROS) for image processing and robot 
control. Aruco markers are used for providing accurate pose tracing in 
real time. The average inference time is approximately 0.158 s for tool 
analysis and around 1.51 s for LLM processing. Since these operations 
are completed prior to robot movement, their latency had minimal 
influence on overall system responsiveness.

These experiments include validating the task decomposition per-
formance in a single and dual-arm robot setup, the robustness of the 
affordance and manoeuvrability model in various shapes of tools, and 
evaluating the overall performance.

3.1. Single-arm robot

We first evaluate the task decomposition performance of LLM. For 
that, a tool and a blue manipulandum are placed on the table with the 
target given as shown in Fig.  6. The task is to manipulate the manip-
ulandum within a close distance, which is sufficient for a single-arm 
robot. The embedded information, which contains the task, the environ-
ment, and the geometry of the tool, is passed to the LLM. In the exper-
iment shown in Fig.  6(a), the robot executes the subtasks generated by 
the high-level symbolic task planner, which include: grasp(right, 
hook); approach(right, hook, block); interact(right, 
hook, block, target); release(right, hook). The right 
arm first moves and grasps the hook, then moves the block to the target, 
and lastly releases the tool back to its original place.

In a non-single tool scenario, where two tools are available on 
the desk as shown in Fig.  6(c), the task planner selects the near-
est tool based on the embedded information to push the block to-
wards the target. The experiment showcases the application of the 
proposed affordance and manoeuvrability model in locating the highest 
manoeuvrability region for manipulandum transportation. During the 
manipulation stage, the manipulandum is kept within the highest ma-
noeuvrability region (indicated with a red circle in Fig.  6) to receive 
affordance effectively from the tool. The minimization of the error 
between the 𝐩obj and the 𝐩target for each experiment is shown in Fig. 
7. These results corroborate that the proposed method can be used to 
actively drive a robot to manipulate an object via a tool.
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Fig. 7. Evolution of the minimization process of the error between the current 
object position and the target for the tasks shown in Fig.  6.

Table 1
Manipulation accuracy across subtasks for different tools.
 Subtask Stick Hook Y-hook 
 Grasp 100% 100% 100%  
 Approach 96% 97% 95%  
 Interact 91% 92% 92%  
 Pass 92% 93% 93%  
 Release 100% 100% 100%  

3.2. Dual-arm robot with long-horizon task

We then evaluate the long-horizon task performance where the 
manipulandum has to travel from far right to far left, far right/left 
to top right/left, and vice versa. The long-horizon task is evaluated 
with multiple tool combinations. The system observes and generates 
a collaborative motion plan. In the experiment shown in Fig.  8(a), the 
right and left arms pick up the stick and the hook respectively. The right 
arm uses the stick to push the manipulandum to the left side, allowing 
the left arm to continue the task. The robot leverages the advantage 
of the hook to drag the manipulandum closer to its working area and 
push the manipulandum to the desired location. In Fig.  8(b), the right 
and left arms grasped the Y-shaped tool and the stick respectively. The 
right arm uses the tool to pass the manipulandum to the left. The left 
arm uses the stick to push the manipulandum to the target location.

The long-horizon task performance is evaluated with the tool-
sharing ability. Assuming there is only one tool available, it has to be 
shared among the dual-arm robot. Fig.  8(c) demonstrates that the tool is 
passed to another arm once the manipulandum is pushed to the middle 
of the table. The manipulandum is moved accurately to the target 
with motion-decomposed: ‘𝚐𝚛𝚊𝚜𝚙; 𝚊𝚙𝚙𝚛𝚘𝚊𝚌𝚑; 𝚒𝚗𝚝𝚎𝚛𝚊𝚌𝚝; 𝚙𝚊𝚜𝚜; 𝚛𝚎𝚕𝚎𝚊𝚜𝚎;
𝚐𝚛𝚊𝚜𝚙; 𝚊𝚙𝚙𝚛𝚘𝚊𝚌𝚑; 𝚒𝚗𝚝𝚎𝚛𝚊𝚌𝚝; 𝚛𝚎𝚕𝚎𝚊𝚜𝚎’ where the left arm releases the 
tool once it is done and the right picks up the tool to continue moving 
the manipulandum. Though the hook is in a two-link geometry, the 
pushing is afforded by the right side of the tool (a single segment) with 
the highest manoeuvrability region.

The minimization of the error between 𝐩obj and 𝐩target for each 
experiment is shown in Fig.  9. Similar to the single-arm robot with 
a single tool experiment, this long-horizon task also demonstrates the 
robustness of the proposed methodology such that the tasks are success-
fully decomposed into multiple collaborative subtasks, and the high-
est manoeuvrability region of the tool is leveraged in manipulandum 
manipulation.

To further evaluate subtask performance, Table  1 shows the ma-
nipulation accuracy, measured as the alignment between 𝐩obj and the 
desired point for the approach, interact, and pass subtasks, and 
the success rate for the grasp and release subtasks across different 
tools. The results show 100% success for grasp and release, while 
the rest of the subtasks maintain high accuracy above 90% for all 
tools. These findings demonstrate that each subtask is executed reliably 
and that the proposed framework achieves robust performance across 
diverse tool geometries in long-horizon dual-arm tasks.

3.3. Tool-object manipulation in constrained environments

To further evaluate the performance of the model in application 
scenarios, different shapes of walls are constructed as shown in Fig. 
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Fig. 8. Long-horizon task: moving the manipulandum from (a) far right to far left with a hook and a stick, (b) far top right to far left with a stick and a Y-shaped 
tool, (c) far left to far right with a hook; and (d)–(f) exit from a confined area with a stepping controller. The manipulandum trajectory is reflected in pink and 
the target is labelled with a blue square.
Fig. 9. (i) Minimization process of the error between the current object 
position and the target for the tasks shown in Fig.  8. (ii) Stepping movement 
evolution of the change in contact between the manipulandum and the highest 
manoeuvrability point for the tasks shown in Fig.  8(d)–(f). 1 refers to in-
contact and 0 refers to no contact. (iii) Contact frequency of a segment 
side: regions depicted in deeper red indicate higher contact frequency with 
the manipulandum and a higher occurrence of affordance provision. (iv)–(v) 
Comparison of success rate and accuracy of tool manoeuvrability points under 
different state-of-the-art methodologies. FT states for fine-tuning, SRST states 
for a single-arm robot with a single tool, Dual refers to dual arms collaboration 
with two tools, and Sharing refers to tool-sharing collaboration.

8(d)–(e). Two walls are designed with 90-degree and 65-degree for 
the inner-angles. Manoeuvring a hook within a confined space presents 
greater challenges compared to using a stick. Additionally, a Y-shaped 
hook proves unsuitable for dragging objects in tight quarters. There-
fore, in this experimental study, we opt for a hook tool with a right 
arm to navigate effectively within the constrained environment. Similar 
to the previous results, Fig.  8(d)–(e) also implements the task planner 
successfully to decompose the task and applies the stepping controller 
for object manipulation. The tool first aligns its 𝐬tip to the first segment 
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of the wall and adopts the proposed non-prehensile stepping motion 
controller stated in Section 2.6. The manipulandum is dragged out from 
the confined area by alternating between the action of ‘repositioning’ 
and ‘rotation-dragging’.

During the pulsing manipulation, the manipulandum maintains con-
tact with the highest manoeuvrability region. The contact changes 
between the centre of the highest manoeuvrability region 𝐩∗ with the 
manipulandum are visualized in Fig.  9(ii). The error between the 𝐩obj
and the wall exit for each experiment is minimized with time, as shown 
in Fig.  9.

3.4. Comparison and analysis

We analyse the affordance utilization and provision for the selected 
tools by assessing the frequency of contact between the manipulandum 
and the tool segments. In the majority of instances, the manipulandum 
interacts with the affordance primarily in the red region, as indicated 
in Fig.  9(iii) and aligns closely with our proposed model.

We compare our system with other state-of-the-art methods. In 
terms of LLM-based task decomposition, we assess the success rates 
of our approach with zero-shot and few-shot learning methods [43], 
DELTA [21], SayPlan [22], and fine-tuning on a smaller dataset, as 
shown in Fig.  10. In the comparison, zero-shot and few-shot learning 
refer to using prompts solely with a pre-trained model, rather than with 
a fine-tuned model. We consider task decomposition successful only if 
the output is optimal, with no unnecessary or redundant steps.

We observe that, under the same conditions, prompting (zero-
shot and few-shot learning) is relatively unreliable, particularly in 
long-horizon tasks. This unreliability may stem from the insufficient 
number of manipulation examples provided in the prompt. Similarly, 
even when more information is given through domain knowledge and 
graphs [21,22], the LLM still struggles to generate a reasonable list for 
tasks involving both arms.

Fine-tuning a model with a smaller dataset (200 examples) yields 
acceptable results; however, it occasionally introduces unnecessary or 
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Fig. 10. Comparison of success rate under different state-of-the-art method-
ologies. FT states for fine-tuning, SRST states for a single-arm robot with a 
single tool, Dual refers to dual arms collaboration with two tools, and Sharing 
refers to tool-sharing collaboration.

Table 2
Success rate comparison in task decomposition.
 Methods Our settings NC1 NC2 Overall (%) 
 Zero-shot 0.05 – – 1.67%  
 Few-shot 0.30 0.24 0.13 22.3%  
 DELTA [21] 0.31 0.26 0.14 23.7%  
 SayPlan [22] 0.31 0.25 0.14 23.0%  
 PDDL [44] 0.99 0.42 0.06 49.0%  
 B. tree [45] 0.99 0.42 0.04 48.3%  
 FT (200) 0.83 0.77 0.69 76.3%  
 Ours 0.98 0.97 0.95 96.7%  

infeasible steps in long-horizon tasks. In general, most methods demon-
strate relatively positive outcomes in single-arm, single-tool tasks (SRST 
and TOME), likely due to the simplicity of these tasks. Specifically, the 
focus is on extracting the manipulandum from a constrained environ-
ment rather than aiming for a specific destination, and coordination 
between arms can be omitted. In summary, utilizing a larger dataset 
for fine-tuning results in enhanced task decomposition performance, 
leading to more consistent outcomes.

To evaluate the generalizability of our framework against state-
of-the-art methods, we conducted a comparative analysis of various 
approaches to robot task planning, focusing on their success rates in 
previously unseen task scenarios. The evaluated methods include Zero-
shot learning, Few-shot learning, DELTA [21], SayPlan [22], planning 
domain definition language (PDDL) [44], behaviour tree [45], and 
Fine-tuning with 200 data (FT 200), and our proposed approach. The 
results are summarized in Table  2. Scenarios Evaluated: Our experi-
ment settings: The position of the robot, tools, block, and target are 
based on our experiment settings; new case 1 (NC1): New language 
instruction with the positions are based on a slightly larger table and 
robot’s workspace settings; new case 2 (NC2): New language instruction 
with the positions are based on a random-sized table and the robot’s 
workspace settings.

For a fair comparison of generalization capability, all baseline meth-
ods, including PDDL and Behaviour Tree, were evaluated under a fixed 
configuration across all scenarios. Specifically, no manual retuning or 
reconfiguration (e.g., workspace bounds, distance thresholds, condi-
tion triggers, or collision margins) was performed for NC1 and NC2. 
Therefore, NC1 and NC2 are zero-shot transfer settings for these meth-
ods, where the task instructions and workspace scale change without 
updating the underlying symbolic rules or conditions.

In our experiment setting, most methods performed well, with 
PDDL and Behaviour Trees achieving the highest initial success rates. 
However, their performance degraded significantly in NC1 and NC2, 
indicating limited generalizability under zero-shot transfer. Specifi-
cally, when the workspace was expanded or resized, the symbolic 
rules and absolute geometric thresholds used in PDDL and Behaviour 
Trees, which were designed for the original workspace, were no longer 
applicable. For example, one condition stipulated that if the distance 
between the block and the right arm was below a fixed threshold, the 
right arm would initiate motion. Once the workspace scale changed, 
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Table 3
Error in tool manoeuvrability points.
 Methods Average (%) RMSE (%) MAE (%) 
 TVR 38% 49% 23%  
 Keypoint 16% 18% 10%  
 Ours 13% 15% 8%  

Fig. 11. Comparison of tool manoeuvrability points under different state-of-
the-art methodologies: Green circles represent the ground truth, while blue, 
pink, and orange denote the computed results of the total variation regulariza-
tion method, keypoint-inspired learning method, and our method respectively. 
(a) Differences visualization; (b) The average error between ground truth and 
computed results along the 𝑥 and 𝑦 axes in percentage; (c) General differences 
in percentage.

such conditions were no longer satisfied, resulting in no valid actions 
being triggered in certain situations.

A similar trend was observed in NC2, where our approach achieved 
a success rate of 0.95, while other methods showed substantially re-
duced performance. In contrast, fine-tuned learning-based methods 
maintain higher success rates because they can interpret task instruc-
tions and scene layouts directly from the prompt input and adjust 
their outputs accordingly. Overall, our proposed method demonstrates 
higher adaptability and generalization to unseen task instructions and 
workspace variations.

We assess the tool analysis method by identifying the highest ma-
noeuvrability point across 32 tool images, with the results outlined in 
Table  3 and Fig.  11. The centre of the manipulated manipulandum is 
taken as the ground truth. For our analysis, we consider the average 
error, root mean square error (RMSE), and mean absolute error (MAE) 
as the key metrics. The results are visualized in Fig.  11, showcasing the 
differences between the ground truth and the computed results under 
various methodologies. In the comparison, we observe that the total 
variation regularization (TVR) method [46] had a relatively higher dif-
ference from the ground truth. The keypoint-inspired learning approach 
(similar to [47]) yields comparable results to our method. However, 
the keypoint approach requires manual labelling of large amounts of 
data and model training, and its accuracy is highly dependent on the 
quality of the dataset. As shown in Fig.  11, both the keypoint and our 
methods had lower errors along the 𝑥-axis than the 𝑦-axis. Overall, 
both achieved relatively lower errors than the TVR method. Yet, in 
general, our proposed method demonstrated more stable performance 
and higher accuracy in terms of manoeuvrability computation.

The proposed framework integrates LLM-based task decomposition, 
manoeuvrability-driven point selection, and a non-prehensile motion 
controller. To disentangle the contribution of individual components, 
we conduct a targeted ablation study by bypassing the LLM-based task 
decomposition and fixing the same subtask sequence across all trials. 
This allows us to isolate the effects of point selection and motion control 
on tool-object manipulation performance.
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Fig. 12. Component-wise ablation on point selection with a fixed subtask 
sequence. Top row: (a) predefined fixed point with the proposed controller; 
(b) endpoint-based selection; (c) side-picker strategy; (d) geometric-centre 
selection. Bottom row: evolution of the positional error between the object 
and the target for (a)–(d).

Fig. 13. Results obtained using straight-line and basic position control in 
constrained environment settings. Structural deformation of the tools and walls 
is observed. The red dashed lines denote the reference geometry from the 
leftmost frame, illustrating the displacement of the wall relative to its initial 
configuration.

As shown in Fig.  12(a), we first replace the manoeuvrability-based 
point selection with a predefined fixed contact point while retaining the 
proposed motion controller. We then evaluate several baseline point-
selection strategies: (b) selecting a point at a fixed distance from the 
tool endpoint, (c) a side-picker strategy that only enforces the object to 
remain on the correct side of the tool, and (d) selecting the geometric 
centre of the tool.

The manipulation outcomes and the corresponding evolution of 
the position error between the object and the target are visualized 
in Fig.  12. With a fixed point, the controller can still manipulate the 
object stably and guide it towards the target. In contrast, the endpoint-
based and side-picker strategies result in significant object slipping 
along the tool, leading to large final errors, as shown in Fig.  12(b,c). 
The geometric-centre strategy yields behaviour closer to the fixed-point 
baseline but still exhibits noticeable drift from the tool centre. These re-
sults indicate that effective point selection and a manoeuvrability-based 
controller are critical for stable non-prehensile manipulation.

We additionally evaluated simpler motion-control baselines in con-
strained environments, including straight-line pushing and basic po-
sition control. In these settings, such controllers frequently failed to 
maintain stable contact and resulted in collisions with surrounding 
boundaries, leading to task failure and potential damage to the en-
vironment and to the tool (see Fig.  13. These failures are primarily 
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due to the strong reliance of simple controllers on accurately modelled 
workspace geometry and precise contact conditions. In contrast, the 
proposed stepping and rotation-dragging controller adapts its motion 
incrementally based on visual feedback, enabling safer and more robust 
interaction under spatial constraints without requiring an explicit or 
highly accurate environment model.

4. Discussion and conclusion

In this paper, we present a new manoeuvrability-driven approach 
for tool-object manipulation. The LLM is integrated for task decompo-
sition, generating collaborative motion sequences for a dual-arm robot 
system. A compact geometrical-based affordance model for describing 
the potential functionality and computing the highest manoeuvrability 
region of a tool is developed. A non-prehensile motion controller is 
developed for TOM, utilizing a stepping controller for incremental 
manipulation within a constrained environment. Experimental results 
are reported and analysed for the proposed methodology validation. 
We illustrate the performance of the proposed methods in the accom-
panying video https://vimeo.com/917120431. Additional details of the 
LLMs and experiments are included in the supplementary materials of 
this paper.

4.1. Discussion

Our method introduces a new affordance and manoeuvrability 
paradigm for tool-based object manipulation. To improve performance, 
the framework is separated into task decomposition and analytical 
motion models. This modular design allows the LLM to handle high-
level planning using cloud computation, while the local computer 
executes physically grounded analytical models for low-level motion. 
In addition, the non-prehensile stepping controller enables incremen-
tal manipulation of objects in constrained environments. Unlike ap-
proaches that require computing an optimal trajectory for dragging the 
object out of a confined space, this method performs iterative small 
adjustments, alternating between tool repositioning and incremental 
rotation-dragging of the object until it is fully extracted. This strategy 
allows stable and precise manipulation in highly restricted areas, in-
spired by animal tool-use behaviours, and supports real-time execution 
without the need for high-end local GPU resources.

However, the method has limitations. The LLM may occasionally 
generate infeasible plans, which can lead to inappropriate motions. To 
improve generalization and enhance transferability to unseen scenarios, 
future work will explore alternative strategies such as domain adap-
tation and transfer learning. Moreover, the current affordance model 
presents promising results with simple geometrical shapes. Dynamic 
shapes like deformable objects may be complicated to perform accu-
rate modelling. Manoeuvrability computation can also be affected by 
unstable illumination, low contrast, or large height differences between 
objects. In our experiments, these challenges were mitigated using 
ArUco markers for real-time tracking.

4.2. Conclusion

This work presents a manoeuvrability-driven framework for tool-
object manipulation that integrates LLM-based task decomposition, a 
geometrical affordance model, and a non-prehensile stepping controller 
for incremental manipulation in constrained environments. Experi-
mental validation demonstrates the effectiveness of this approach for 
collaborative dual-arm tasks and various tool configurations.

For future work, we would like to extend our method to deal with 
multiple object transportation and manipulation with tools. We would 
also like to perform deformable object manipulation, for example, the 
case of manipulating objects with ropes or fabrics. Also, we would like 
to test the performance of our controller but using other models. For 
that, the stability of the controller might be needed. We encourage 
readers to work on this open problem.

https://vimeo.com/917120431
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