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Abstract—Solar forecasting has emerged as a cost-effective
technology to mitigate the negative impacts of intermittent solar
power on the power grid. Despite the multitude of deep learning
methodologies available for forecasting solar irradiance, there is
a notable gap in research concerning the automated selection
and holistic utilization of multi-modal features for ultra-short-
term regional irradiance forecasting. Our study introduces So-
larFusionNet, a novel deep learning architecture that effectively
integrates automatic multi-modal feature selection and cross-
modal data fusion. SolarFusionNet utilizes two distinct types
of automatic variable feature selection units to extract relevant
features from multichannel satellite images and multivariate
meteorological data, respectively. Long-term dependencies are
then captured using three types of recurrent layers, each tailored
to the corresponding data modal. In particular, a novel Gaussian
kernel-injected convolutional long short-term memory network
is specifically designed to isolate the sparse features present in
the cloud motion field derived from optical flow. Subsequently, a
hierarchical multi-head cross-modal self-attention mechanism is
proposed based on the physical-logical dependencies among the
three modalities to investigate the coupling correlations among
the modalities. The experimental results indicate that SolarFu-
sionNet exhibits robust performance in predicting regional solar
irradiance, achieving higher accuracy than other state-of-the-art
models and a forecast skill ranging from 37.4% to 47.6% against
the smart persistence model for the 4-hour-ahead forecast.

Index Terms—Solar irradiance forecasting, Multi-modal deep
learning, Attention mechanism, Optical flow

I. INTRODUCTION

THE deployment of solar technologies, especially photo-
voltaic (PV), has increased significantly in recent years

due to concerns about global climate change, supportive
government policies, and lower equipment costs. Despite the
promise of solar energy, the main challenge to its feasibility
is its highly volatile and intermittent nature. Consequently,
accurate prediction of solar irradiance and power production
has become a crucial requirement for stable operation of the
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electrical grid [1], [2]. Current solar forecasting applications
focus mainly on solar irradiance forecasting and solar power
forecasting [3]. Solar power forecasting is calculated from
irradiance prediction data and a range of possible predictors
based on regressive models or model chains [4], [5]. Therefore,
solar irradiance prediction is fundamental for solar power
forecasting. In this research, we focus on global horizon-
tal irradiance (GHI) prediction. The GHI is predominantly
modulated by clouds, aerosols, and water vapor through a
sophisticated process of radiative transfer in the atmosphere.
The spatial and temporal variability of these factors, especially
cloud fields, makes the prediction of GHI an exceptionally
demanding endeavor [6]. Consequently, accurately capturing
cloud motions is essential for reliable GHI forecasting.

In recent years, deep learning techniques have gained
widespread attention among solar engineers due to robust
generalizability, efficient handling of unstructured data, and
automated feature extraction [7], [8]. With the availability
of a wide range of satellite data, all-sky images, numerical
weather predictions (NWP), historical meteorological data,
etc., deep learning models for cloud dynamics extraction and
solar forecasting show promising performance [9]. Although
all-sky images provide information on small-scale cloud cover
dynamics, satellite images provide not only information on
local cloud cover dynamics but also on the spatial dynamics
of neighboring regions, providing a robust data infrastructure
for solar irradiance forecasting based on deep learning models
[6], [10], [11].

However, the efficient utilization of multi-modal data
sources to construct accurate prediction models is facing sig-
nificant challenges. Multi-modal data provide a huge number
of input features, which have complicated nonlinear relation-
ships with the prediction targets. Although the inclusion of
certain features can be beneficial in improving the accuracy
of the prediction, the input of redundant information not only
wastes computational resources but also negatively affects the
accuracy of the prediction [12]. Existing research generally
tends to apply statistical methods for feature selection, and
then input the filtered features to deep learning models [7],
[12], [13], [14]. For example, Nejati et al. [12] calculated the
correlation factor between the input meteorological variables
and solar irradiance based on the theory of mutual information
(MI) to predict solar power. Bouzgou et al. [13] proposed
a Wrapper Mutual Information Methodology (WMIM) that
integrates Extreme Learning Machine (ELM) and MI to
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predict solar irradiance. This methodology performs feature
selection by optimizing the similarity function between input
variables. However, these statistically based feature selection
methods have some obvious limitations when used as pre-
processing steps in deep learning. Firstly, statistical-based
analysis methods usually rely on global features for similarity
calculations, which ignores local similarities between covariate
features and target features, leading to information redundancy
or inefficient use. Secondly, when the results of feature selec-
tion are used as input for deep learning models, statistically
based feature selection methods do not adequately capture the
complex non-linear relationships between covariate features
and predictive targets. This oversight can lead to excessive
redundancy or insufficient information in the feature selection
process, ultimately compromising prediction accuracy.

Moreover, the effective fusion of multi-modal features is
also one of the significant challenges for solar irradiance
forecasting [15]. Complex coupling correlations are presented
among the multi-modal features. For example, optical flow
signals derived from the visible and infrared channels of
satellite images reveal cloud trajectories and dynamic den-
sity information, respectively, which are essential for refining
cloud dynamics based on satellite images [16]. Therefore,
it is essential to extract optical flow features as a distinct
mode and integrate them with multi-channel satellite images
and multi-variable meteorological data. However, there are
fewer researches utilizing optical flow features derived from
satellite images as input sources, and there are research gaps
regarding algorithms for sparsity feature extraction of optical
flow signals at high temporal resolution. Although Boussif
et al. [11] and Liu et al. [17] utilized optical flow signals
derived from satellite images and all-sky images to predict
solar irradiance, the research did not explore in-depth the
critical role of optical flow signals in extracting cloud motion
features based on satellite images.

Two typical multi-modal feature fusion techniques are in-
cluded in deep learning-based solar forecasting: linear ag-
gregation [18], [19], and cross-attention mechanism fusion
[11], [17]. Ajith et al. [19] used a fully connected layer
to concatenate extracted features from infrared sky images
as well as historical GHI. However, exploring the coupling
correlation between multi-modal features with linear aggrega-
tion is challenging. Cross-attention mechanisms have excellent
global information search capabilities, which provide excellent
techniques for mining coupled correlations. Liu et al. [17]
proposed a multi-modal information fusion-based framework
to encode historical clear-sky GHI and all-sky images, sub-
sequently, a cross-modal attention mechanism was used to
explore the coupled correlations between the two modalities.
Boussif et al. [11] used the Crossformer architecture to com-
bine satellite data features and ground-based measurements
for the prediction of day-ahead solar radiation. However,
vanilla cross-attention techniques are typically used to fuse
two modal features. When optical flow signals are involved in
the fusion process as a distinct mode, the coupling correlation
becomes more complicated. Theoretically, the input data of
the three modalities used in this work revealed the following
physical logical dependencies: first, the sparse optical flow

signals enable the predictive model to accurately identify
the cloud motion features in satellite images over time; and
second, the infrared and visualization channels of the satellite
images jointly provide the shape and structure features of the
clouds, which complement the deficiencies of ground-based
sensors in collecting cloud information. Therefore, how to
effectively integrate optical flow signals, satellite image data,
and meteorological data, and accurately model the physical
logical dependencies between multi-modal features, posing a
challenge for multi-modal feature fusion.

To bridge the aforementioned research gaps, we propose
an end-to-end deep learning model called SolarFusionNet
based on the self-attention mechanism for automatic selection
of multi-modal features and cross-modal features fusion to
enhance regional ultra-short-term (i.e. from 10 minutes to 4
hours ahead) solar irradiance prediction. To demonstrate the
validity of SolarFusionNet, we performed experiments at four
Baseline Surface Radiation Network (BSRN) stations [20],
and compared the prediction results with the state-of-the-art
(SOTA) benchmark models. The main contributions are:

• We propose a novel automatic multi-modal feature selec-
tion and fusion framework to deeply explore the coupled
correlations among different modal features. The model
incorporates two automatic multi-modal feature selection
mechanisms, three specific Recurrent Neural Networks
(RNNs) for spatio-temporal feature encoding, and an
attention mechanism-based cross-modal fusion strategy,
aiming to enhance the accuracy of regional solar irradi-
ance prediction with high time resolution (i.e. 10-minute
resolution).

• To minimize information redundancy and maximize the
impact of relevant input variables, we introduce special-
ized Meteorological Selection Units (MSU) and Spectral
Selection Units (SSU). Utilizing the local information
extraction capability of convolutional operation and the
gating mechanism, the units are able to effectively max-
imize the weights of the relevant input variables and
minimize the weights of redundant information.

• Optical flow signals derived from high time resolution
satellite images exhibit sparsity. To efficiently extract
features from sparse optical flow signals, we propose
a Gaussian Kernel-injected Convolutional Long Short-
Term Memory Network (GKConvLSTM). Adaptive ker-
nel weights are then computed using the normalized local
density values and a predefined Gaussian Kernel (GK).

• A hierarchical multi-head self-attention mechanism is
proposed based on the physical-logical dependencies
among the three modalities for cross-modal feature cross-
fertilization and eliminates redundant information. Such
an approach aims to utilize the complementary strengths
of various features to enhance the overall prediction
performance.

The remainder of the paper is organized as follows. Sec-
tion II describes the multi-horizon GHI forecasting procedure
and the multimodal data pre-processing method. Section III
presents the proposed SolarFusionNet. Experimental details
and performance evaluation are discussed in Section IV.
Finally, Section V provides the conclusion.
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II. PRELIMINARIES

The focal objective of this work is the development of an
integrated framework for solar irradiance forecasting, utilizing
optical flow derived from satellite images, original multi-
channel satellite images and historical multivariate meteo-
rological data from various locations. In this section, we
elucidate the mathematical issues of multi-horizon GHI predic-
tion utilizing multi-modal data, as well as the pre-processing
techniques employed in the study.

A. Multi-Horizon GHI Forecasting with Multi-modal Data

In GHI forecasting scenarios, the GHI clear sky index
(CSI) is usually selected as the primary prediction target to
remove the influences of seasonal patterns, thus improving the
accuracy of the forecast in a range of predictive methodologies
[5]. The CSI is calculated as:

CSIt =
GHIt

GHItcs
, (1)

where GHIcs refers to the GHI value under clear sky condition,
which can be derived from a physical or empirical clear-sky
model. Here, we use the Perez-Ineichen model to calculate
GHIcs [21], and set the CSI to 1 at night when GHIcs = 0.

Satellite images, optical flow signals derived from satellite
images, and ground measurements of various meteorological
data are utilized as inputs. Satellite images and optical flow
signals can provide information on cloud movements, water
vapor, and aerosol levels that are often inaccessible through
ground measurement stations. Thus, it is imperative to develop
a multi-modal data fusion model fq(·) to effectively fuse satel-
lite images XS ∈ RT×Cs×H×W , optical flow signals XOf ∈
R(T−1)×COf×H×W and meteorological data XM ∈ RT×Cts

to enhance the accuracy of end-to-end GHI predictions. Each
batch forecast takes the form:

Ŷi(t, τ) = fq(τ,Yt−k:t
i ,X t−k:t

Si
,X t−k:t

Ofi
,X t−k:t

Mi
,Si), (2)

where, Ŷi(t, τ) indicates the predicted CSI of the τ -step-ahead
forecast at time t, Yt−k:t

i is the k-step labels of input batch, Si

indicates spatial information including the longitude, latitude,
and altitude of each location, as well as the geospatial data
within the satellite image coverage area. In line with other
direct methods, we simultaneously output forecasts for τmax

time steps (i.e., τ ∈ {1, · · · , τmax}). We integrate all multi-
modal historical information within a finite look-back window
k, using CSI and known inputs only up to and including
the forecast start time t (i.e., Yt−k:t

i =
{
Yt−k
i , · · · ,Yt

i

}
).

The predicted CSI values are then converted back to GHI for
evaluation using Eq.(1) with GHIt+∆t

cs .

B. Data Description and Pre-processing

The following two types of datasets are utilized:
1) Time Series Data: Time-series of measured GHI, Beam

Normal Irradiance (BNI), Diffuse Horizontal Irradiance (DHI),
and meteorological parameters such as temperature, relative
humidity, and atmospheric pressure, were collected at 10-
minute resolution over 7-year (2016-2022) from four BSRN
stations [20], as shown in Fig. 1.
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Fig. 1. Geographical distribution of the four selected BSRN stations (triangle
symbols) in the updated Köppen–Geiger climate classification system [22].

To ensure data quality and the robustness and reliability
of the deep learning model, rigorous quality control (QC)
on the collected measurements is performed using two filters
(Extremely-rare limits & Closure equation) [23]: −2 <GHI< 1.2E0n cos

1.2(Z) + 50
−2 <DHI< 0.75E0n cos

1.2(Z) + 30
−2 <BNI< 0.95E0n cos

0.2(Z) + 10


[
|closr| < 8% for Z < 75◦ and GHI> 50
|closr| < 15% for 75◦ < Z < 93◦ and GHI> 50

]
.

In the above QC procedure, Z is solar zenith angle, E0n is
extraterrestrial irradiance on a surface normal to the solar ray,
|closr| = |GHI−(DNI cosZ+DHI)| is the difference between
measured and computed GHI.

2) Satellite Images: Multi-channel satellite images are ob-
tained from the Meteosat Second Generation Rapid Scan
Service (MSG-RSS) operated by EUMETSAT [24]. We se-
lected Rectified RSS images (level 1.5), which have spatial
coverage spanning a longitudinal range from -65◦ to 84◦,
and a latitudinal range from 16◦ to 70◦. The data product
consists of satellite images collected in 12 spectral wavelength
channels (8 in the thermal infrared spectrum, 3 in the visible
spectrum, and 1 in the near-infrared spectrum, as shown in
Table I). HRV represents the High Resolution Visible Channel,
distinguished by its precise spatial resolution of 1 km. The
remaining 11 channels are low-resolution channels with the
spatial resolution of 3 km. Therefore, the HRV channel is
excluded in this study to maintain the consistency of spatial
resolution across different satellite image channels.

Satellite images with 10-minute resolution of VIS 0.6, VIS
0.8, WV 6.2, WV 7.3, and IR 10.8 are selected as the inputs.
The two channels in the visible spectrum, VIS 0.6 and VIS
0.8, could provide cloud images during daytime. The chosen
wavelengths allow the distinction from the Earth’s surface of
different cloud types, as well as support the determination
of the atmospheric aerosol content. The two channels in
the water-vapour absorption band, WV 6.2 and WV 7.3,
provide the water-vapour distribution for two distinct layers
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TABLE I
AN OVERVIEW OF THE 12 SEVIRI CHANNELS [24]

Channel Absorption Band Wavelength (µm) Bandwidth (µm)

HRV Visible 0.75 0.6-0.9
VIS 0.6 VNIR 0.635 0.56-0.71
VIS 0.8 VNIR 0.81 0.74-0.88
IR 1.6 VNIR 1.64 1.50-1.78
IR 3.9 Window 3.92 3.48-4.36
WV 6.2 Water Vapor 6.25 5.35-7.15
WV 7.3 Water Vapor 7.35 6.85-7.85
IR 8.7 Window 8.70 8.30-9.10
IR 9.7 Ozone 9.66 9.38-9.94
IR 10.8 Window 10.80 9.80-11.80
IR 12.0 Window 12.00 11.00-13.00
IR 13.4 Carbon Dioxide 13.40 12.40-14.40

in the troposphere. These two channels can also be used to
derive atmospheric motion vectors in cloud-free areas, and
will support the IR 10.8 channel in the determination of the
height of semitransparent clouds [25], [26]. We initially trim
the satellite images to encompass a latitudinal span from -
6.64◦ to 10.51◦ and a longitudinal stretch from 38.82◦ to
55.97◦ to cover the four BSRN sites, and reshape satellite
image size to 64×64. To facilitate our analysis, we convert the
satellite imagery from a geostationary projection to the World
Geodetic System 1984 (WGS 84) coordinate frame [11] and
perform standard deviation normalization in every channel.

III. METHODOLOGY

To address the challenges of ramp events in the GHI predic-
tion process, SolarFusionNet employs an automated feature se-
lection strategy, augmented by an attention-driven mechanism,
to adeptly capture the cloud motion from satellite images. The
integration of these elements is crucial to increase the accuracy
of GHI predictions. Figure 2 illustrates the framework of So-
larFusionNet. First, we develop two distinct feature selection
networks: SSU and MSU, which are utilized to assess and
prioritize the importance of input features from multi-spectral
satellite images XS ∈ RT×Cs×H×W and meteorological data
XM ∈ RT×Cts , respectively. Furthermore, the T V − L1
algorithm [27] is utilized to derive optical flow signals for
each spectral channel, increasing spatial background details.
Each optical flow channel shares the same weight Wt as
the corresponding satellite image channel. Each dataset is
encoded using encoders customized for its respective modality.
Meteorological features are encoded using the vanilla long-
short-term memory (LSTM) network [28], adept at capturing
temporal dynamics. Satellite images benefit from the spatial-
temporal capabilities of the vanilla Convolutional Long-Short-
Term Memory (ConvLSTM) network [29], which excels at
interpreting visual patterns over time. Optical flow signals are
accurately encoded by a specialized GKConvLSTM, which is
specifically designed to integrate the nuances of motion and
spatial features. To effectively fuse multimodal features, we
propose a hierarchical multi-head cross-modal self-attention
mechanism. The following subsections describe in detail the
customized modules of SolarFusionNet.

SSU MSU MSU... ...

+ +

... ...

SSU

+ +

ConvLSTM LSTM

1−

×

t

GKConvLSTM

+


tsB T C
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 
sB T C H W

S
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 −   
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Fig. 2. SolarFusionNet: Attention-driven multi-modal feature fusion frame-
work for GHI forecasting.

A. Automated Multi-modal Feature Selection Units

The intricate correlations between various meteorological
data and satellite channels are typically elusive, making it
challenging to anticipate which variables are significant. To
empower the model with the ability to dynamically and
autonomously process multivariate features in a non-linear
manner, we propose two automatic feature selection units,
MSU and SSU. Inspired by the Temporal Fusion Transformer
(TFT) [30], the MSU and SSU, as depicted in Fig. 3, are
designed to process historical meteorological data and satellite
spectral channels, respectively. The units aim to improve the
performance of the model by enabling it to identify and utilize
the most informative features without manual intervention. In
addition to clarifying which variables are significant for the
prediction task, the feature selection process enables the model
to eliminate extraneous inputs that can introduce noise and
adversely impact the prediction performance.

Without loss of generality, we present MSU as follows
(Fig. 3 (a)). Let Si

w ∈ R1×w denote the transformed input
of the ith meteorological feature and w denote the length of
the input window, with

∑ℓmmax
1 Si

w being the flattened vector
of the meteorological features input ℓmax. Each input vector
Si

w is fed through the designed 1-Dimensional Convolutional
Residual Unit (CRU1D) which performs the extraction of
local temporal features from meteorological data, effectively
avoiding the omission of information.

CRU1D(Si
w) = LN(σ(conv1D(ε1))⊙ conv1D(ε1) + Si

w) (3)

ε1 = conv1D(ELU(conv1D(Si
w))), (4)
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where, ELU is the Exponential Linear Unit (ELU) activation
function [31], ε1 ∈ Rw indicates output of intermediate layer,
LN represents standard layer normalization [32], σ(·) is the
sigmoid activation function, ⊙ is the element-wise Hadamard
product. To enhance modeling flexibility, we implemented
gated residual connections to selectively suppress any un-
necessary components. By employing a sigmoid activation
function, it is effective to suppress input features with minimal
or no contribution, while excluding extraneous inputs that
potentially introduce noise and negatively affect the prediction
performance. During training, dropout is applied before the
gating layer and LN.

Each Si
w is fed into the CRU1D for feature encoding in

the time window w of each input variable. Concurrently, an
aggregate of

∑ℓmax

1 Si
w across all levels up to CRU1D under-

goes a similar encoding process. Subsequently, a softmax
layer is employed to assign trainable weights Vw to each
meteorological feature, and the feature filtering is completed
by element-wise Hadamard product, which helps establish a
nonlinear relationship with the target feature (CSI). The math-
ematical representation is given by the following expression:

Vw = Softmax(CRU1D(
∑ℓmmax

1
Si

w)) (5)

S̃
i

w = CRUS̃i

1D(S
i
w) (6)

S̃w =

ℓmmax∑
i=1

Vi
wS̃

i

w. (7)

For SSU, the fundamental architecture of the MSU is
retained; however, to capture the temporal feature and spatial
feature nuances of each spectral channel within the input
window, we replace CRU1D in the MSU with CRU3D. In
addition, a global average pooling (GAP) layer is utilized to
distill spatial information more effectively before performing
the softmax operation. The framework of the SSU is depicted
in Fig. 3 (b), the mathematical representation of the output,
derived from the features processed by the SSU, is given by
the following expression:

CRU3D(Bj
w) = LN(σ(conv3D(η1))⊙ conv3D(η1)+Bj

w) (8)

η1 = conv3D(ELU(conv3D(Bj
w))) (9)

Ww = Softmax(GAP(conv3D(
∑ℓbmax

1
Bj

w))) (10)

B̃
j

w = CRUB̃j

3D (B
j
w) (11)

B̃w =

ℓbmax∑
j=1

Wj
wB̃

j

w. (12)

The meaning of each symbol is the same as for MSU.
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Fig. 3. (a) Meteorological Variable Selection Unit; (b) Spectral Selection
Unit.

Fig. 4. Optical flow signals with varying time intervals. In cases of high
time resolution, the cloud moves over a shorter distance or may not move at
all, resulting in sparse optical flow signals. As the time intervals increase, the
sparsity of the optical flow information gradually reduces.

B. Gaussian Kernal Injection Convolutional Long Short-Term
Memory Network

We observe that the optical flow signals derived from high-
temporal-resolution satellite images demonstrates sparsity. As
shown in Fig. 4, the sparsity becomes more pronounced as the
time intervals shorten. In the feature extraction process from
optical flow signals using the vanilla ConvLSTM, the conven-
tional convolution operation struggle to accurately extract key
features due to the limitation of local receptive fields when
extracting sparse features. Given that high time resolution
(10 minutes) cloud motion information primarily exhibits
characteristics similar to a low-frequency signal, which can
lead to suboptimal performance. To address the challenge, we
introduce a novel GKConvLSTM, as shown in Fig. 5.

The GK is well-known as a low-pass filter with anti-aliasing
properties, proficient at smoothing out high-frequency infor-
mation. Consequently, we apply a postprocessing step using
a predefined GK after the convolution operation within the
ConvLSTM framework which can attenuate high-frequency
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noise and thus smooth the input. To address the challenge
of sparsity and enhance computational efficiency, we develop
an adaptive GK weighting algorithm that dynamically adjusts
based on the feature map extracted from the pre-trained model.
The approach solves the sparsity problem by adjusting the
weight of the kernel according to the local density of the
feature map.

The size and standard deviation σ of GK are deterministic
functions. A two-dimensional GK is formed by sampling a
Gaussian distribution in both dimensions:

k(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (13)

where k(x, y) indicates the x and y spatial dimensions in the
kernels. While the direct application of a predefined GK to
convolutional outputs is generally effective, which exhibits
inefficiencies when applied to sparse optical flow signals
[33]. To overcome this limitation, we leverage feature maps
obtained from a pre-trained model to calculate local densities.
Subsequently, the adaptive kernel weights are calculated using
the normalized local density values with the predefined GK.
Such an adaptive filtering approach relies on the local density
values, thereby ensuring more efficient processing of sparse
optical flow information. The mathematical expressions are:

D(pi,j) =
1

k2s

∑ks−1

u=0

∑ks−1

v=0
f (i+ u, j + v) (14)

γi =
D (pi,j)−Dmin

Dmax −Dmin
(15)

θGσ = γi · k(x, y), (16)

where D(pi,j) represents the local density values of the feature
map f (i+ u, j + v), γi is the standardized GK weights, θGσ

is the adaptive GK with standard deviation σ. The pre-trained
model used in this study is ResNet50 [34]. The mathematical
formula for the convolution operation in GKConvLSTM is:

hi = ELU(pool(θGσ
⊛ (θw ⊛ xi))), (17)

where ⊛ represents the convolution operation, θw is the weight
of convolutional layer, xi represents the input tensor.

C. Hierarchical Multi-head Cross-Modal Self-Attention Mech-
anism

Optical flow and spectral satellite data, along with meteo-
rological variables, have been processed by temporal feature
extraction using GKConvLSTM, ConvLSTM, and LSTM,
respectively. However, effective integration of features from
various data sources presents a pressing challenge. To effec-
tively integrate features, we propose a hierarchical multi-head
cross-modal self-attention mechanism. Satellite, optical flow,
and meteorological features require patching and embedding
of spatial location information before feature fusion. Rotary
Positional Embedding (RoPE) [35] is used to embed spatial
location information, encompassing latitude, longitude, and
altitude for each pixel of satellite images, as well as the
location information of each ground-level station.

The process of cross-modal feature fusion is conducted in
two primary stages. Initially, for the physical-logical relation-
ship between the optical flow features and the satellite image

+

×

σ σ

GK

GK

×

tanh

+

σ

×

tanh

1t−

1t−

t

t

t

t

Gaussian Kernel Injection ConvLSTM

BN
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×

×





Fig. 5. Gaussian Kernel Injection ConvLSTM.

features, the linear projection of the optical flow features is
used as a query (Qof ), where each Qof maps the dynamic
properties in a specific time and region. Meanwhile, the keys
(Ks) and values (Vs) are the linear projections of the satellite
image features, which provide spatial cloud information. Each
Qof is compared with all Ks under the self-attention mech-
anism to compute the attention scores between the features
of the optical flow and the features of the satellite image.
By normalizing the attention scores using softmax, these
are subsequently used to weight the corresponding Vs. This
means that the final output H̃1 not only contains information
about the optical flow, but also incorporates highly correlated
features of the satellite image. In this manner, SolarFusionNet
is able to model the cloud information reflected between
the optical flow features and the satellite image features.
Equations (18) and (19) present the mathematical formulation
for the first stage.

Subsequently, the integrated output from the first stage is
further fused with the features derived from meteorological
variables to model the second physical-logical relationship.
Specifically, a linear projection of H̃1 is used as the query
vector, while the keys (Km) and the values (Vm) are generated
from meteorological features. The purpose of H̃1 is to com-
pare with each Km as a mechanism to assess the consistency
of the spatial dynamics of each particular region observed
from satellites with ground-based meteorological data in the
related region. By calculating the dot product between H̃1

and Km, attention scores that reflect the correlation can be
obtained. The score is normalized by softmax to obtain the
weights corresponding to each Km. Using the weights, the
corresponding Vm (i.e., meteorological features) are weighted
and summed to produce a composite output. With the appli-
cation of the self-attention mechanism, SolarFusionNet is able
to automatically identify and emphasize the features that are
most critical to predicting solar irradiance, thus improving the
accuracy and efficiency of prediction. Equation (20) presents
the mathematical formulation of the algorithm for the second
stage.

Each phase of the feature fusion process utilizes a modified
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version of the self-attention mechanism [30] to enhance the
integration of information. A unified approach [30] is utilized
in which each head calculates the attention using identical
information, with the outputs subsequently aggregated addi-
tively. For the first phase:

Atten(Q,K,V ) = Softmax
(

QKT

√
dattn

)
V (18)

H̃1 =
1

mh

mh∑
h=1

Atten(QofW
(h)
Qof

,KsW
(h)
Ks

,VsWVs) ·WH̃1
,

(19)
where W

(h)
Qof

and W
(h)
Ks

are head-specific weights for keys and
queries, WVs

are value weights shared across all heads, WH̃1

are used for final linear mapping of first phase. Similarly, for
the second stage:

H̃2 =
1

mh

mh∑
h=1

Atten(H̃1W
(h)

H̃1
,KmW

(h)
Km

,VmWVm
) ·WH̃2

,

(20)
where W

(h)

H̃1
and W

(h)
Km

are head-specific weights for keys
and queries, WVm

are value weights shared across all heads,
WH̃2

are used for final linear mapping of second phase.
Furthermore, to facilitate residual concatenation, the features
from each data source are initially aligned dimensionally using
a linear transformation.

IV. PERFORMANCE EVALUATION

In this section, we describe the training procedure and eight
benchmarks that contribute to the comparative analysis of our
proposed framework. These models along with the proposed
model are trained using 5-year data from 2016 to 2020,
while data from 2021 are used for hyper-parameter tuning
and data from 2022 is used for performance evaluation. The
experimental results are then analyzed and discussed.

A. Training Procedure

To guarantee the fairness of the experimental evaluation
process, all experiments are carried out using a single GPU.
To mitigate overfitting during the training process, we imple-
mented early stopping protocols with the patience parameter
set to 5 epochs. All training procedures employ the Ranger
[36] optimizer with a weight decay of 0.05 and deploy the
cosine warmup strategy [37]. To enhance the performance
of the model, we conducted an extensive search for optimal
hyperparameters based on Optuna [38]. The chosen hyperpa-
rameters are shown in Table II.

B. Benchmarks

To evaluate the effectiveness of the proposed model, we
chose eight benchmarks for comparison, including several
SOTA deep learning models designed specifically for pre-
diction tasks: Cross Video Vision Transformer (CrossViViT)
[11], Multiple Image Convolutional Long Short Term Memory
Fusion Network (MICNN-L) [19], FEDformer [39], Auto-
former [40], and TFT [30]. CrossViViT and MICNN-L are
multi-modal fusion models for predicting solar irradiance
that leverages the same inputs as SolarFusionNet. While the

TABLE II
HYPERPARAMETERS FOR SOLARFUSIONNET

Items Hyperparameters Search Range

Batch Size 8 -
Input window 24 -
Learning rate 0.001 {0.0001, 0.1}
Kernel size for conv1d 3 -
Kernel size for conv3d 5× 5× 5 -
Hidden layer units 128 {64, 128, 256}
LSTM layer 3 {1, 3, 5}
ConvLSTM layer 3 {1, 3, 5}
GKConvLSTM layer 3 {1, 3, 5}
σ 1 -
Attention head 4 {1, 4, 8}
Output step 24 -
Dropout 0.5 {0.1, 0.9}

remaining three models can only be used to predict time
series, they only use historical meteorological data as input.
The hyperparameter configurations for each benchmark are
established on the basis of guidelines from the literature. The
SolarFusionNetwof and SolarFusionNetws indicate SolarFu-
sionNet without optical flow as inputs and without satellite
images as inputs, respectively. Furthermore, we utilize the
widely used smart persistence model as benchmark [1], which
assumes CSI persist between time t and and time t+∆t,

ŷt+∆t

i = GHIt+∆t
cs · yti . (21)

Given the significance of time in temporal prediction sce-
narios, we also incorporate hour-of-day and day-of-year as
auxiliary features for all of benchmarks.

C. Evaluation Metrics

To evaluate the performance of each predicion model, four
metrics are used: Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), Normalized Root Mean Square Error
(nRMSE), and Forecast Skill (Sf). Sf is compares the RMSE
of the proposed model and the RMSE of the Smart Persistence
model.

MAE =
1

n

n∑
i=1

|yi − ŷi| (22)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (23)

nRMSE =

√
1
n

∑n
i=1(yi − ŷi)2

1
n

∑n
i=1 yi

(24)

Sf = 1− RMSEForecast

RMSESmartPersistence
, (25)

where yi is the observed values, ŷi is the prediction values,
ȳ is the mean of the observed values. In the training process,
RMSE is chosen as the loss function.
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D. Comparison with benchmark models

To compare the models’ performance, the prediction error
metrics are calculated using only data from periods when
Z < 85◦ (i.e., data from night periods are excluded). The
results of SolarFusionNet and the benchmarks are presented
in Table III. As shown, SolarFusionNet significantly outper-
forms all benchmarks across the four subdatasets described in
Section II, demonstrating the superiority of SolarFusionNet for
ultra-short-term GHI forecasting. In terms of 10-minute-ahead
prediction, SolarFusionNet performs the best at the CAB, PAL,
and PAY sites, with RMSE of 70.45 W/m2, 69.37 W/m2,
and 62.91 W/m2, respectively, and Sf of 0.360, 0.370, and
0.315, respectively. The prediction accuracy of SolarFusionNet
is slightly lower than that of CrossViViT only for the CNR
station, with RMSE, nRMSE, MAE, and Sf of 62.98 W/m2,
0.166, 37.02 W/m2, and 0.301, respectively. The prediction
accuracy of SolarFusionNet gradually improves as the predic-
tion horizon increases at four BSRN stations, with Sf reaching
a maximum of 0.540 for the 80-minute-ahead and 160-minute-
ahead prediction horizons. Notably, SolarFusionNet signifi-
cantly outperforms the sub-optimal model, CrossViViT, for
the CAB, CNR, and PAL sites over a 240-minute forecast
horizon. Specifically, the RMSE of the forecasts for these
three sites is reduced by 7.72 W/m2, 10.26 W/m2, and 13.67
W/m2, respectively. For PAY site, the prediction accuracy
of SolarFusionNet is slightly less than that of CrossViViT.
Specific data show that SolarFusionNet achieves a RMSE of
101.9 W/m2, nRMSE of 0.280, MAE of 75.84 W/m2, as well
as a Sf of 0.374. Furthermore, it is evident that the prediction
accuracy of SolarFusionNet at the four sites outperforms all
the time-series prediction models.

In addition to statistical metrics, we employ a visualization
method to further evaluate the predictive capabilities of the
proposed model when compared to the benchmark models
(CrossViViT, Autoformer, Smart Persistence). Figure 6 dis-
plays a comparison of sample time series for ground truth data
alongside 240-minute-ahead forecasts at four stations. Solar-
FusionNet has been shown to demonstrate superior accuracy
in predicting ramp events. At the CAB site on June 14, 2022,
SolarFusionNet achieves a predicted RMSE of 117.8 W/m2,
while the other three benchmark models all have RMSEs
greater than 150 W / m2. Despite the occasional lag effect in
forecasting, SolarFusionNet experiences such a phenomenon
significantly less frequently than the benchmark models.

E. Analysis of multimodal input data

To more thoroughly explore the effects of satellite-derived
optical flow signals and multi-channel satellite images on
the prediction accuracy, we perform two comparison exper-
iments at the four BSRN sites. The experimental results have
been presented in Table III, the Sf of SolarFusionNetwof

(without optical flow data) exhibits an average decline of
6.44%, 10.49%, 11.65%, and 12.75% across four prediction
horizons, respectively. Similarly, the Sf of SolarFusionNetws

(without satellite data) shows more significant reductions, with
averages of 11.84%, 12.34%, 13.61%, and 16.65% across
the same prediction horizons, respectively, when compared

Fig. 6. Visualization results of SolarFusionNet and the benchmark models
at four sites with 240-minute-ahead prediction details. The unit of RMSE is
W/m2.

to the SolarFusionNet model. The results further demonstrate
the significant contribution of multi-channel satellite images
and optical flow signals in improving the accuracy of solar
irradiance prediction. Moreover, as the prediction horizon
expands, the improvement in prediction accuracy becomes
more pronounced.

F. Comparison under different weather conditions

Since cloud is the main atmospheric constitute that affects
the available solar irradiance on the ground level, the predictive
performance of the models are evaluated by comparing the
forecasting accuracy under cloudy sky conditions [2], [14].
Specifically, the performance of models under cloudy skies
reveals their ability to handle solar variability. In this research,
we used the Bright-Sun clear-sky detection algorithm [41] to
categorize the data from the four BSRN sites into clear-sky
conditions and cloudy-sky conditions.

The performance of 240-minute-ahead GHI forecasting
using SolarFusionNet, CrossViViT, Autoformer, and Smart
Persistence are presented in Fig.7. In clear-sky conditions,
the prediction RMSE of the four models are similar, and
only Autoformer has a higher prediction RMSE at the PAY
site. SolarFusionNet achieves the highest prediction accuracy
at the CAB, CNR, and PAL sites under cloudy conditions,
with a maximum RMSE reduction of 11.12 W/m2 compared
to the sub-optimal model, CrossViViT. For the PAY site, the
prediction accuracy of SolarFusionNet is slightly lower than
that of CrossViViT, with a difference in RMSE of only 0.73
W/m2. The trend in prediction accuracy for the four models
under cloudy conditions is consistent with the overall trend in
prediction accuracy shown in Table III, which is due to the
predominance of cloudy weather at the four sites throughout
the year [20]. In general, the performance of SolarFusionNet
is remarkable under cloudy conditions, especially at the CAB,
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT PREDICTION MODELS BASED ON FOUR BSRN STATIONS

Stations Method Prediction Horizons

10-minute-ahead 80-minute-ahead 160-minute-ahead 240-minute-ahead

RMSE nRMSE MAE Sf RMSE nRMSE MAE Sf RMSE nRMSE MAE Sf RMSE nRMSE MAE Sf

CAB

Smart Persistence 110.1 0.321 62.75 - 170.8 0.532 111.1 - 181.1 0.572 120.5 - 170.7 0.545 108.4 -
TFT[30] 76.29 0.245 46.14 0.307 112.2 0.360 74.01 0.343 130.7 0.419 89.42 0.279 140.9 0.453 99.78 0.175

FEDformer[39] 70.58 0.226 40.73 0.359 94.83 0.304 56.49 0.445 104.1 0.334 64.15 0.426 112.9 0.363 71.1 0.339
Autoformer[40] 73.96 0.237 42.81 0.328 87.81 0.282 52.73 0.486 97.14 0.311 60.17 0.464 102.5 0.331 65.03 0.399
MICNN-L [19] 73.38 0.236 46.32 0.334 90.41 0.291 55.90 0.471 98.73 0.317 62.72 0.455 104.5 0.335 73.20 0.388
CrossViViT[11] 72.29 0.232 42.41 0.343 86.16 0.277 55.82 0.495 96.64 0.310 67.15 0.467 102.4 0.330 72.46 0.400

SolarFusionNetwof 72.87 0.234 44.10 0.338 92.39 0.296 57.63 0.459 100.3 0.322 66.72 0.446 105.3 0.338 73.59 0.383
SolarFusionNetws 74.19 0.238 47.39 0.326 94.18 0.302 61.32 0.449 106.5 0.342 72.89 0.412 107.8 0.346 84.29 0.368

SolarFusionNet 70.45 0.226 39.19 0.360 84.91 0.273 53.25 0.502 90.31 0.289 58.91 0.501 94.68 0.303 63.33 0.445

CNR

Smart Persistence 90.09 0.235 48.16 - 163.3 0.428 100.9 - 181.5 0.476 116.6 - 173.1 0.454 107.9 -
TFT[30] 73.63 0.193 45.54 0.183 109.6 0.288 71.18 0.329 123.3 0.324 82.61 0.321 130.7 0.344 89.02 0.245

FEDformer[39] 71.79 0.188 49.78 0.203 92.23 0.242 62.42 0.435 100.4 0.264 67.69 0.447 102.9 0.271 70.72 0.405
Autoformer[40] 64.24 0.169 35.96 0.286 88.93 0.234 53.33 0.455 97.92 0.257 59.81 0.461 105.5 0.277 64.93 0.390
MICNN-L [19] 65.25 0.171 41.52 0.276 87.63 0.230 57.68 0.463 97.89 0.256 68.03 0.460 103.3 0.271 69.26 0.403
CrossViViT[11] 62.71 0.165 34.61 0.304 86.92 0.228 51.74 0.468 95.37 0.251 59.68 0.475 100.9 0.265 63.95 0.417

SolarFusionNetwof 64.53 0.169 42.08 0.283 86.98 0.228 53.26 0.467 97.36 0.255 65.57 0.463 102.3 0.268 68.34 0.409
SolarFusionNetws 66.71 0.175 40.25 0.260 88.11 0.231 60.59 0.460 99.62 0.261 71.38 0.451 105.9 0.277 74.36 0.388

SolarFusionNet 62.98 0.166 37.02 0.301 80.11 0.209 53.57 0.509 87.26 0.228 63.58 0.519 95.25 0.249 67.37 0.449

PAL

Smart Persistence 110.2 0.326 59.70 - 166.3 0.493 104.6 - 179.8 0.532 113.6 - 171.4 0.508 104.5 -
TFT[30] 83.98 0.249 51.43 0.238 114.4 0.339 76.34 0.312 135.9 0.403 94.221 0.244 149.9 0.445 107.98 0.125

FEDformer[39] 74.49 0.221 46.73 0.324 87.51 0.259 61.73 0.473 103.5 0.307 76.62 0.424 116.8 0.347 88.28 0.318
Autoformer[40] 75.42 0.223 43.53 0.316 90.23 0.268 58.65 0.457 99.58 0.295 67.03 0.446 106.3 0.315 73.55 0.380
MICNN-L [19] 72.68 0.217 42.57 0.340 86.42 0.255 54.69 0.480 94.93 0.282 62.38 0.472 107.7 0.321 68.21 0.372
CrossViViT[11] 70.23 0.208 37.84 0.365 83.00 0.246 51.66 0.500 93.62 0.278 61.17 0.479 104.3 0.309 69.08 0.391

SolarFusionNetwof 72.97 0.217 42.08 0.338 87.65 0.259 52.73 0.473 96.38 0.286 62.78 0.464 102.5 0.305 68.96 0.402
SolarFusionNetws 74.21 0.221 44.39 0.327 89.36 0.265 56.79 0.463 100.2 0.297 66.38 0.443 105.5 0.314 75.36 0.384

SolarFusionNet 69.37 0.205 35.79 0.370 77.62 0.230 43.64 0.533 84.31 0.251 49.24 0.531 90.63 0.268 55.58 0.471

PAY

Smart Persistence 91.86 0.252 45.52 - 159.7 0.438 91.97 - 172.7 0.475 103.9 - 162.8 0.447 96.30 -
TFT[30] 74.95 0.206 43.24 0.184 112.5 0.309 70.81 0.296 131.8 0.363 88.58 0.234 147.6 0.406 105.1 0.093

FEDformer[39] 67.80 0.186 38.27 0.261 85.17 0.234 57.33 0.467 100.3 0.276 71.83 0.416 111.9 0.308 83.10 0.312
Autoformer[40] 74.62 0.205 43.39 0.188 117.2 0.322 75.83 0.266 136.4 0.374 92.66 0.208 148.4 0.408 104.9 0.088
MICNN-L [19] 69.32 0.191 45.89 0.245 85.96 0.236 53.92 0.462 97.69 0.268 68.91 0.434 107.5 0.295 79.29 0.340
CrossViViT[11] 68.01 0.187 38.93 0.259 81.67 0.225 54.03 0.489 92.16 0.254 63.31 0.464 99.82 0.274 70.03 0.387

SolarFusionNetwof 64.39 0.177 40.29 0.299 85.38 0.235 56.38 0.465 99.35 0.273 70.23 0.425 110.2 0.303 77.23 0.323
SolarFusionNetws 66.59 0.183 42.36 0.275 87.26 0.240 58.63 0.453 103.2 0.283 72.22 0.402 112.8 0.309 81.22 0.307

SolarFusionNet 62.91 0.172 35.00 0.315 73.41 0.202 48.76 0.540 88.50 0.243 63.22 0.485 101.9 0.280 75.84 0.374

Fig. 7. The comparison of GHI prediction using SolarFusionNet, CrossViViT,
Autoformer and Smart Persistence under clear and cloudy conditions at four
BSRN stations.

CNR and PAL sites, which significantly improves the predic-
tion accuracy.

To demonstrate the robustness of the SolarFusionNet model,
the test datasets from the four BSRN sites are divided into four
seasons according to meteorological criteria: spring (March to
May), summer (June to August), fall (September to Novem-

ber), and winter (December to February). The 240-minute-
ahead prediction RMSE of the four models for each season
are presented in Fig. 8. SolarFusionNet has demonstrated
superior performance and stability at CAB, CNR, and PAL
sites, especially during summer months. At the PAY site,
SolarFusionNet’s prediction accuracy is slightly inferior to
CrossViViT. The analysis reveals the overall superior GHI
prediction performance and robustness of SolarFusionNet.

To comprehensively evaluate the solar irradiance prediction
performance of SolarFusionNet under various weather condi-
tions, we have performed a detailed interval division based on
CSI. The comparison results presented in Fig. 9 clearly reflect
the excellent performance of SolarFusionNet in different CSI
intervals. In the interval of low CSI values (0-0.3), which
represents cloudy or low-sunlight conditions, SolarFusionNet
shows a significant advantage. In addition, SolarFusionNet
performs well at all four BSRN sites. The results not only
highlight SolarFusionNet’s superior ability to handle extreme
weather conditions, but demonstrate its strong potential to
adapt to different geographic locations and diverse climatic
conditions.

G. Uncertainty and robustness analysis

To comprehensively investigate the prediction capacity of
SolarFusionNet, as suggested by Murphy and Winkler [42]
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Fig. 8. The comparison of GHI prediction using SolarFusionNet, CrossViViT,
Autoformer and Smart Persistence under different seasons at four BSRN
stations.

Fig. 9. The comparison of GHI prediction using SolarFusionNet, CrossViViT,
Autoformer and Smart Persistence under different CSI intervals at four BSRN
stations.

and Yang et al. [43], we utilize marginal distribution plots to
analyze SolarFusionNet, CrossViViT, Autoformer, and Smart
Persistence model in 240-minute-ahead GHI forecasts at CAB
station. The joint and marginal distributions of measured and
predicted GHI are depicted in Fig. 10. Compared to the
benchmarks, the joint distribution of SolarFusionNet exhibits
better alignment along the diagonal, which explains its smaller
statistical errors. The probability density of SolarFusionNet
is below the diagonal, indicating that the predicted GHI are
generally lower than the measured values. A detailed analysis
of the 2D kernel density contours for CAB reveals that the pre-
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Fig. 10. Joint and marginal distributions of measured and predicted GHI
using (a) SolarFusionNet, (b) CrossViViT, (c) Autoformer, and (d) Smart
Persistence when evaluated at CAB station. The contour lines show the 2D
kernel densities.

dicted values of SolarFusionNet are slightly below the identity
line for high irradiance conditions, while the distribution of
the predicted values tends to be near the identity line at lower
irradiance levels.

The histograms shown in Fig. 10 indicate the marginal
distributions of observed values (on the top) and predicted
values (on the right). The marginal distribution of the observed
values shows that the peaks are located in the region of lower
GHI, which suggests that the weather conditions at the CAB
site in 2022 are skewed toward cloudy for most of the time.
The predicted distributions for SolarFusionNet, CrossViViT,
and Autoformer all exhibit the peak, but these peaks are shifted
towards greater predictions compared to the measured values.
In contrast, the predicted distribution of Smart Persistence
undergoes a shift towards smaller predictions. Among the
four models, SolarFusionNet exhibits the smallest shift, and
the predicted value distribution closely matched the actual
measurements.

Furthermore, Fig. 11 shows the conditional distributions to
investigate the conditional dependence between observations
and 240-minute-ahead predicted GHI using SolarFusionNet,
CrossViViT, Autoformer and Smart Persistence. It is evident
that when the measured GHI is smaller than 850 W/m2, the
peak of the local distribution of the predicted GHI of Solar-
FusionNet is more consistent with the diagonal, which means
that the prediction accuracy of SolarFusionNet is higher. When
the measured GHI exceeds 850 W/m2, the deviation of the
estimated value from the actual value increases, leading to a
decrease in the accuracy of the prediction. In terms of the
probability density of the prediction error, when 250 W/m2

< GHI < 750 W/m2, the corresponding ridge diagrams are
narrower, reflecting higher prediction accuracy.
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Fig. 11. Conditional distributions of 240-minute-ahead predicted GHI using
SolarFusionNet, CrossViViT, Autoformer, and Smart Persistence.

Fig. 12. Comparison of GHI prediction error metrics for three ablation
experiments at CAB station.

H. Ablation analysis

To elucidate the significance of each component, we con-
ducted three targeted ablation studies at the CAB station:
we omitted the SSU and MSU modules, substituted GK-
ConvLSTM with the vanilla ConvLSTM, and replaced the
hierarchical multi-head cross-modal self-attention mechanism
with a linear layer. Figure 12 shows the results of the ab-
lation experiments in four different prediction horizons. It
is shown that in the 10-minute-ahead and 80-minute-ahead
forecasting, the SSU & MSU components and the multi-
head cross-modal self-attention mechanism markedly affect
the predictive accuracy of SolarFusionNet. Specifically, the
MAE was reduced by 6.99 W/m2 and 6.13 W/m2, while the
RMSE experienced reductions of 2.17 W/m2 and 8.11 W/m2,
respectively. In contrast, the replacement of GKConvLSTM
yielded more modest improvements, with a decrease of 3.39
W/m2 in MAE and 0.81 W/m2 in RMSE.

Within the scope of longer forecast horizons, the implemen-
tation of GKConvLSTM exhibits a pronounced enhancement
in predictive accuracy. Compared to the performance of Con-
vLSTM in extracting features from optical flow signals, the er-

2022-01-08 12:00-12:10

2022-01-08 14:40-14:50 ScoreCAM-GKConvLSTM ScoreCAM-ConvLSTM

ScoreCAM-GKConvLSTM ScoreCAM-ConvLSTM

Fig. 13. Visualisation of the first layer GKConvLSTM and ConvLSTM on
VIS 0.6 channel for optical flow features using ScoreCAM. The darker red
colour of the heatmap represents higher significance of the feature.

ror metrics of SolarFusionNet are significantly reduced by 7.35
W/m2 and 10.16 W/m2 for MAE and 9.31 W/m2 and 12.99
W/m2 for RMSE, respectively. This significant improvement
can be primarily attributed to the adaptive weight mechanism
of the Gaussian kernel, which exhibits superior proficiency in
smoothing extraneous random noise that intensifies with the
expansion of the predictive horizons. This enables the model
to achieve enhanced stability of the longer-term predictive
capacity. In this study, we also employ a convolutional feature
insight technique, Score Class Activation Mapping (Score-
CAM) [44], to visualize optical flow information captured by
GKConvLSTM and ConvLSTM, respectively, as illustrated in
Fig. 13. It is apparent that GKConvLSTM possesses a superior
capability to pinpoint pivotal features within the optical flow
signals with greater accuracy when compared with the vanilla
ConvLSTM.

I. Variable significance analysis

We quantify the importance of each variable in different
modalities by analyzing the weights (Vw, Ww) extracted
from the automated multimodal feature selection units as
described in Section III-A. The results of the analysis of the
importance of the variables for the CAB station are depicted
in Fig. 14. The variable importance analysis of the spectral
channels indicates that the two visible channels, VIS 0.6
and VIS 0.8, hold the highest significance. This prominence
is ascribed to the proficiency of the VIS 0.6 and VIS 0.8
channels in delineating the contours and configurations of
cloud formations, coupled with their lower absorption of water
vapor, rendering them particularly adept at detecting lower
cloud strata and fog.

The variable importance analysis conducted on meteoro-
logical variables conclusively identifies historical CSI as the
most influential contributor. Furthermore, BNI and DHI also
demonstrate significant importance, with importance scores
exceeding 0.1, which can be attributed to the direct physical
relationship with GHI. Conversely, the relative importance of
pressure (P), temperature (Temp), and relative humidity (RH)
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Fig. 14. Variable significance analysis at CAB station for 240-minute ahead
forecasting.

are discerned to be comparatively marginal. Among these
variables, pressure registers the highest importance score of
0.0921. The temporal features, day of the year (DoY) and hour
of the day (HoD), exhibit minimal importance, a circumstance
attributable to effective normalization of time-periodic factors
in GHI prediction, achieved by the application of the clear-sky
model.

V. CONCLUSION

The inherent uncertainty and intermittency of solar irradi-
ance significantly impact the integration of PV power into the
grid. Cloud movement is the primary cause of solar irradi-
ance ramp events, therefore, integrating multispectral satellite
images, derived optical flow information, and historical mete-
orological data is deemed an effective method to improve the
accuracy of solar irradiance predictions. However, there have
been limited studies on developing an end-to-end deep learning
model that can simultaneously perform automatic selection
and efficient fusion of multimodal features for regional solar
irradiance prediction. This study introduces a deep learning
model named SolarFusionNet, which uses a self-attention-
based architecture that seamlessly integrates automatic multi-
modal feature selection and cross-modal fusion. Experimental
results indicate that SolarFusionNet is capable of achieving
SOTA prediction performance compared to advanced deep
learning models. In the 240-minute-ahead prediction results,
the Sf can reach 0.476, and RMSE and MAE are reduced by
13.67 W/m2 and 13.50 W/m2, respectively, compared to the
suboptimal model.
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