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Abstract—Achieving both behavioral similarity and appropri-
ateness in human-like motion generation for humanoid robot
remains an open challenge, further compounded by the lack
of cross-embodiment adaptability. To address this problem, we
propose HuBE, a bi-level closed-loop framework that integrates
robot state, goal poses, and contextual situations to generate
human-like behaviors, ensuring both behavioral similarity and
appropriateness, and eliminating structural mismatches between
motion generation and execution. To support this framework,
we construct HPose, a context-enriched dataset featuring fine-
grained situational annotations. Furthermore, we introduce a
bone scaling-based data augmentation strategy that ensures
millimeter-level compatibility across heterogeneous humanoid
robots. Comprehensive evaluations on multiple commercial plat-
forms demonstrate that HuBE significantly improves motion sim-
ilarity, behavioral appropriateness, and computational efficiency
over state-of-the-art baselines, establishing a solid foundation for
transferable and human-like behavior execution across diverse
humanoid robots.

Index Terms—Humanoid robot, human-like behavior, behav-
ioral appropriateness, pose generation.

I. INTRODUCTION

Humanoid robots play an pivotal role in human-robot in-
teraction (HRI), where the behavioral human-likeness signifi-
cantly influences user perception and acceptance [1]. Accord-
ing to the uncanny valley theory, subtle deviations in robot
behaviors that closely approximate human actions can elicit
profound discomfort for humans. This phenomenon reveals
a fundamental challenge when generating human-like behav-
iors for humanoid robots: simultaneously ensuring behavioral
appropriateness while preserving motion similarity. Gener-
ally, similarity emphasizes the faithful reproduction of human
kinematic and dynamic patterns, ensuring that the robot’s
behavior physically resembles human motion. In contrast,
appropriateness emphasizes that robot behaviors must comply
with situational demands and human cognitive expectations,
thereby ensuring that the generated actions are contextually
meaningful and socially acceptable within a given scenario. As
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Fig. 1. Contextual semantics dictate human-like action execution by
influencing behavioral appropriateness. Two cases to show the influ-
ence of the contextual situation for performing human-like actions. Case I
(“hugging friend”) requires an open-arm posture with elevated elbows to
express affection, while Case II (“boxing with friend”) demands guarded
elbows for defensive intent, despite nearly identical end-effector positions.
These full-body pose adaptations to contextual demands constitute behavioral
appropriateness, i.e., the alignment of motions with contextual situations.

the example shown in Fig 1, these behaviors must not only
satisfy kinematic goals, which are the targets of traditional
behavior planning methods for behavioral similarity, but also
align with human expectations within specific scenarios [2],
i.e., modifying the actions to adapt the contextual situation for
achieving behavioral appropriateness.

Despite progress in behavioral similarity via various meth-
ods, e.g., motion retargeting (IK) [3]–[5] and imitation
learning [6]–[8], behavioral appropriateness remains under-
explored in extensive discussions. Moreover, existing hu-
manoid motion generation methods to ensure behavior simi-
larity suffer from several limitations. First, most of the current
datasets [9] exhibit insufficient description of expressiveness
of human motion, relying on 6D joint positions which lacks
semantic annotations that bridge contextual situations to be-
havioral appropriateness. Moreover, several human demon-
strated datasets just use short and simple text (e.g., ’running’)
to represent human motion sequence, which can not describe
the entail and rich contextual situations. Second, the open-
loop mechanism during pose generation and retargeting pro-
cesses leads to the body structural mismatches in the two
stages, which results in action human-likeness and semantics
degradation. For example, [10] typically maps the generated
pose to humanoids without considering the current robot state
into generation module, thereby the generated pose neglecting
the physical constraints of humanoids. Sequently, resulting
the retargeting problem. Third, cross-embodiment adaptation
remains unaddressed, impeding deployment on heterogeneous
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robots [11] for different potential usage.
To address these challenges, we propose HuBE, a bi-level

closed-loop framework, that generates human-like behaviors
achieving both behavioral similarity and appropriateness. First,
we propose the HPose dataset through open-sourced datasets,
which incorporates contextual semantics of behavioral situ-
ations through fine-grained language annotations (e.g., “You
hold the bottom of the cardboard box with both hands and
struggle to raise it above your head.”) and leverage 6D poses to
preserve the behavioral human-likeness. Second, we introduce
a closed-loop mechanism through implicit skeletal parameter
adaptation in HuBE. Therefore, it can fuse multi-modalities,
i.e., robot state, behavioral goal, and contextual situation, to
enable the end-to-end integration of motion generation and
robot control and avoid the structure mismatching problem.
Furthermore, the introduction of contextual situation in robot
action planning process guaranteed the behavioral appro-
priateness while keeping the behavioral similarity. Finally,
we propose a bone scaling operation for data augmentation
to simulate the morphological distribution of state-of-the-art
commercial humanoids, addressing robust adaptation across
heterogeneous platforms. This enables the trained action gen-
eration model to generalize across diverse robotic kinematic
parameters, laying the foundation for the millimeter-level
cross-embodiment compatibility that distinguishes our frame-
work with other works. The contributions are summarized as
follows:

• We propose a new perspective on human-likeness, defined
by behavioral similarity and appropriateness, supported
by HPose dataset with fine-grained annotations bridging
motion semantics for context-aware pose generation.

• We propose a bi-level closed-loop framework that enables
humanoid robots to generate actions satisfying both be-
havioral similarity and appropriateness, while eliminating
structural mismatches between the motion generation and
execution modules.

• We introduce a bone scaling-based data augmentation
strategy that provides millimeter-level cross-embodiment
compatibility, enabling robust deployment across het-
erogeneous humanoid robots without additional shape
adaptation.

II. RELATED WORKS

To ensure the behavioral similarity of humanoid robots,
recent approaches focus on replicating human motion pat-
terns through two paradigms: motion synthesis and imitation
learning (IL). Motion synthesis methods generate human-like
trajectories using auto-regressive models [12] or diffusion
processes [13]–[15], but often produce physically infeasible
poses requiring post-processing. Moreover, a challenge for
motion synthesis works [16], [17] is that they cannot control
well the added control signal for robot joints. To tackle this
issue, we concentrate on creating the robot’s pose on a frame-
by-frame basis using the robot state and joint goal, rather
than generating an entire motion sequence. IL methods [18]–
[20] learn control policies directly from human demonstra-
tions, yet face challenges in handling heterogeneous robot

morphologies and novel task constraints. Furthermore, some
attempts [21], [22] ensure that humanoids learn autonomous
skills from egocentric vision instead of third-view vision,
which is closer to human behavioral habits. However, this
end-to-end learning method still suffers from the challenges
of generalization performance for new tasks. Consequently,
we focus on learning a pose generation policy rather than a
task skill to enhance the generalization ability of our model.
Additionally, we introduce bone scaling operation strategies
to boost the model’s adaptability across different humanoid
robots.

Research on behavioral appropriateness, rooted in social
psychology and anthropology, examines the regulatory mech-
anisms through which social norms govern individual ac-
tions [23]. In HRI, empirical studies confirm that the congru-
ence between robotic behaviors and user cognitive expecta-
tions directly dictates social acceptance for robots [24], [25].
Although existing efforts have achieved several accomplish-
ments in behavioral appropriateness for mobile robots, such
as verification models [26], it is still a challenge for humanoid
robotics to perform contextually appropriate behaviors. A
critical limitation is the absence of systematic integration of
contextual non-kinetic parameters (e.g., contextual situation)
in recent human-like motion generation methods for humanoid
robots, which severely constrains contextual appropriate mo-
tion synthesis. To resolve this, we propose a semantic-task
fusion framework that synergizes situational semantics with
robotic behavioral tasks, establishing a behavior generation
paradigm compliant with human sociocognitive principles.

III. METHODOLOGY

To drive humanoid robots to perform expressive human-
like poses under the requirement of behavioral similarity
and appropriateness, we propose the HuBE, i.e., human-
like behavior execution framework, which consists of three
modules as shown in Fig. 2, i.e., data processing, behavior
generation, and behavior execution. The behavior generation
module takes motion situations, current robotic observations,
and target poses as inputs and generates human-like actions
to reach the target. The behavior execution module then maps
the generated human-like pose sequence to humanoid robots
based on the physical characteristics provided in the robot pose
data.

A. Data Specifications

We enhanced a new dataset (HPose) in Table I for this
study by open-sourced datasets, i.e., KIT [9], AMASS [27],
and Motion-X [28] with three operations below:

Data Definition. We reduced the body joints as depicted in
Fig. 3, identifying 11 main joints. Specifically, the position
of the left/right hand is identical to that of the left/right
wrist. Additionally, we introduced the rotational data that is
represented by quaternions for each joint in our dataset. To
enrich the contextual situation l of human motions, we use the
LLM (GPT-4o) to generate this description of given motion
sequence with the annotation l̂ in the original dataset. In detail,
we select two directed frames of one motion sequence with



Fig. 2. Overview of the whole algorithm. This algorithm includes three parts, i.e., building dataset, model training and algorithm implementation.

Fig. 3. The human skeletal system introduction. a) The composition of the
human body’s skeleton. b) Simplified definition of human upper body chain
H for expressive human pose dataset (HPose). c) A simple example of the
influence caused by floating bone.

annotation l̂ (i.e., a person is drinking water) and put them
into LLM. After reasoning the situation of these materials, the
LLM generates a rich and detailed l as ”a human is drinking
water while the cup is closely on the table in his left side. He
is attempting to cause the cup with his right hand.”

Dataset Structure. We reformat motion data in each frame
into the configuration {(si, gi, li, ai)} to align with policy
training needs. Initially, we extract the 11 joint poses of
the current frame, defining these as the apparent state si;
Subsequently, we incorporate the poses of the three end-
effectors, i.e., both hands and the head, from the subsequent
frame as the goal state gi. Ultimately, the 11 joint poses
from the subsequent frame are utilized as the action ai to
fulfill the goal gi based on the apparent state si. Additionally,
a situational context li is appended to characterize human
behavior scenarios.

Data Augmentation. Due to the differences in body mech-
anisms between humans and humanoids, such as arm length,
it is necessary to adjust the body shape of the model in the
original dataset to generate poses for humanoids with various
configurations. We get the augmented dataset H′ (pseudo

ground truth, Pseudo GT) through a bone scaling operation
by updating the bone size with collected humanoid robot body
parameters R = {ri, rk} (same definition as Fig. 3) with Eq. 1
and Algorithm 1.

H′ =
⋃

(Ji,Jk)∈H

(
J ′
k = J ′

i +

−−−−→
Jk − Ji

∥
−−−−→
Jk − Ji∥

· ∥−−−−→rk − ri∥

)
(1)

Where the {(Ji, Jk)} is the directed joint pair in the original
dataset H (ground truth, GT), while the {(ri, rk)} is the one
in robot’s body parameters R. Furthermore, R are collected
from 9 typical humanoid robots, such as Unitree H1 and PAL’s
TALOS.

Algorithm 1: Bone scaling for data augmentation
The data: Human body chain H = {Ji}, robot body

chain R = {ri}
The result: Augmented human body chain H′

1 Generating directed joint pair set D = {(Ji, Jk)} and
joint frame set H′ = {J ′

0}
2 while D ̸= ∅ do
3 Randomly select (Ji, Jk)
4 if (Ji, Jk) ∈ H then
5 Vk = Jk−Ji

norm(Jk−Ji)
norm(rk − ri)

6 if J ′
i ∈ H′ then

7 J ′
k = Vk + J ′

i

8 H′ = H′ ∪ J ′
k

9 D = D − {(Ji, Jk)}
10 Return H′

To enable effective data augmentation for cross-embodiment
compatibility, we simplify the skeletal system by categorizing
bones into two types, i.e., fixed and floating bones, based
on their size variability during human movement. As shown
in Fig. 3-c, floating bones (e.g., the spine) exhibit length
changes with body poses, while fixed bones remain stable; this
distinction is critical for adapting human motions to humanoid
robots via bone scaling operations.



TABLE I
DATA SOURCE DISTRIBUTION OF HPOSE DATASET

Dataset KIT AMASS Motion-X HPose
Motion 3912 5600 22413 31925
Frame 2308K 12457K 47339K 62104K

B. Pose Generation
We aim to drive the humanoid robot to perform human-

like poses based on a situational context l, current state s
and a motion target g. We formulate the humanoid robot
motion generation problem as a Markov Decision Process
[29] without a specific reward function [30], which is denoted
by (S,A, T ,G, l, ρ0, γ). S is the state space containing all
keypoint joint poses of the upper body of the robot, which
implicitly reflects the body structure information, such as bone
length. G is the goal space that includes the target poses of
end effectors, i.e., both hands and head. A is the action space
including all keypoint joint poses that the robot needs to take
to reach the goal. We use ρ0 to denote the distribution of
the initial state. T : S × A → S is the transition function
denoting the transition probability from the current state to the
next state after taking an action. γ is the discount factor. The
motion generator of the robot can be specified by a policy with
parameters θ, πθ : S,G, l → A, which specify the action that
should be taken in the robot’s current state (Eq. 2). The prob-
lem is to determine an imitation policy πθ, using a provided set
of expert demonstrations {ξ1, ξ2, · · · }. Therefore, we collect
all the episodes in ξ into a dataset {(si, gi, li, ai)}, and the
objective is to maximize the probability of the demonstrated
action, which can be formulated as follows,

θ∗ = argmax
θ

N∏
i=0

πθ(ai|si, gi, li), (2)

To achieve this imitation policy, two classical network archi-
tectures are used, i.e., MLP and transformer.

Considering the strategy of current motion generation meth-
ods which typically replicate fixed human motion sequences to
achieve target poses, ignoring contextual situation constraints,
several problems remain to be solved for our policy training
process. First, how to guarantee the behavioral appropriateness
due to the exist of similar end-effector poses under varying sit-
uations. Second, how to accurately generate the target behav-
iors which is not seen in human motion sequences (dataset). To
overcome these challenges, we propose Input Alignment and
Hindsight Training strategies for stable human-like behaviors
generation for humanoids. Furthermore, the cross-platform
compatibility of our policy is guaranteed by training with the
augmented data.

Inputs Alignment. To solve the first problem, we use l to
bridge the generated motion to appropriateness. By utilizing
the l of current motions, we first use the Bert tokenizer
(BERT (·)) to tokenize the li into a fixed vector, then use an
MLP (MLP (·)) to map the humanoid proprioception (si, gi)
to the same size as the language vector, as shown in Fig. 2-part
2 and Eq. 3.

valig = MLP (si ⊕ gi)⊕MLP (BERT (li)) (3)

Fig. 4. The generation results for bone-size stability. The first row is the
generated action based on the model trained on GT, while the second row is
the results on the Pseudo GT. The input body pose is captured from GR1,
while the situational context is ”Lift a heavy box over your head with both
hands”.

Hindsight Training. To generate an arbitrary motion pose
for second problem, it is not efficient to directly select the next
frame pose in the motion sequence as the target pose during the
training. Therefore, based on the idea of hindsight experience
replay buffer [31], which takes the state accomplished in the
same trajectory τ as the final goal, we augment current datasets
D by randomly taking the future poses in the frame window
H as the target pose we want the robot to achieve (shown in
Eq. 4).

Dnew =
⋃
τ∈D

T⋃
t=0

{(st, gt+k, lt, at+k)}Hk=1 (4)

C. Behavior Execution

In this section, we aim to adopt the generated human-like
actions into humanoid robots, i.e., converting actions from
Cartesian space into the robot’s joint space. The challenge
in this module is how to keep the human-likeness during
the converting process, especially involving the movement of
floating bones.

To solve this problem, we propose a multi-constrained IK
solver, i.e., a Closed-loop Inverse Kinematics (CLIK) algo-
rithm based on the Pinocchio toolbox, to determine the robot
joint control values corresponding to the target body pose.
Specifically, a two-step solver is implemented during the IK
solving process. First, we calculate the robot torso joint angles
J∗

torso, including joints of the neck and head (Etorso). In this step,
we emphasize the rotational pose of the target joint because the
connected bone length in the torso (see Fig. 3-floating bone)
varies with different body poses. Second, we create a reduced
model by locking the torso joints using the Pinocchio toolbox
and then calculating the dual-arm joint angles J∗

arms, such as
wrists (Earms). To enhance the stability of this IK solver, all
the joint poses are processed by an SE(3) group filter, which
is developed with Pinocchio’s SE(3) interpolation algorithm.

J∗
torso = argmin

Jtorso

∑
i∈Etorso

∥∥f i
FK(Jtorso)− ptarget

i

∥∥2
J∗

arms = argmin
Jarms

∑
j∈Earms

∥∥∥f j
FK(J

∗
torso, Jarms)− ptarget

j

∥∥∥2 (5)



TABLE II
BONE-SIZE STABILITY RESULTS [METER]

Dataset Bone Type GR1 TALOS G1

GT
Fixed 0.18 0.14 0.23

Floating 0.31 0.26 0.283
GT & Fixed 1.3e-4 2.4e-3 4.4e-4

Pseudo GT Floating 4.1e-4 6.7e-3 6.8e-4

IV. RESULTS

To validate the effectiveness of our methodology, corre-
sponding evaluation metrics are provided. Specifically, two
evaluation methods are proposed to assess the behavioral
similarity.

• End-effector accuracy (E-A) is designed to measure the
pose accuracy of the end-effectors, including both hands
and head.

• Human similarity (H-S) aims to describe the pose con-
sistency by considering all selected body markers.

For each evaluation method, we provide two metrics called
Mean Per Joint Position Error (MPJPE) [32] and Mean Per
Joint Orientation Error (MPJOE) to measure the error of po-
sition and orientation, respectively. To evaluate the behavioral
appropriateness, three metrics are proposed as below:

• Fréchet Motion Distance (FMD): measure the distribu-
tional similarity between generated motions and authentic
human motions in the feature space similar as FID
metric [33]. This metric works based on the premise that
the human demonstrated motion in dataset is appropriate.

• Multimodal Distance (MM-Dist): calculate average dis-
tances between situation context and generated motions.

• R-Precision [33]: quantify the semantic discriminability
of generated motions by establishing a text-to-motion
cross-modal retrieval task.

A. Multi-Embodiment Testing

To evaluate the cross-embodiment capability of our works,
two experiments are provided. Specifically, the bone-size
stability is evaluated to determine if the generation module
can generate actions satisfying skeletal systems for various
humanoids. Additionally, a retargeting accuracy testing is
implemented to evaluate performance of execution module.

Bone-size stability. Bone size is a fundamental charac-
teristic of the human body and significantly influences the
expressiveness of behaviors. To verify its stability, we examine
the generated results of two different bone types (fixed and
floating) for three classical humanoid robots in various human
motions. The stability parameter is calculated by the average
absolute error between the bone lengths of the input robot pose
and the generated poses.

The results in Table II show that the bone-size stability in
the GT dataset is poor for both bone types of all the selected
humanoid robots. The reason is that the trained policy is not
familiar with the input humanoid bone structure; thereby, the
generated pose may be with wrong bone size (see Fig. 4).
Although the motion retargeting strategy is widely used to
adapt unmatched poses to humanoid robots, it is still faced

with insurmountable defects, i.e., human-likeness loss during
the motion retargeting processing as discussed in [10]. To
address this problem, we aim to produce human-like poses for
humanoids while adhering to their skeletal system constrains.
Therefore, we add the augmented the pseudo GT to re-train
the policy. Fortunately, the generation error is optimized to
the millimeter level, which means the bone-size stability for
various humanoid robots is acceptable. Additionally, in both
datasets, the floating bone shows greater sensitivity compared
to the fixed bone as shown in Table II and Fig. 4. This
increased sensitivity arises because the floating bone’s size
fluctuates with different movements, even when the body
configuration remains constant.

Fig. 5. The retargeting accuracy between generated actions and the robot’s
actions for three humanoids in different frames.

Retargeting accuracy. We testing the retargeting accuracy
by implementing it in various humanoids, e.g., GR1, with
generated motion in the situational context ”a person is start to
dancing with partner.”. As indicated in Fig. 5, the quantitative
results proved that our framework can be adopt to the selected
humanoid robots while keeping action accuracy and human
similarity with small value of MPJPE and MPJOE for both
E-A and H-S. However, the MPJPE value of H-S is bigger
than that of E-A as we emphasize the rotational pose in
pose retargeting process for floating bones due to its unique
character. Fortunately, the accuracy of the retargeting module
is guaranteed by keep small&similar MPJOE and acceptable
MPJPE in both E-A and H-S. A qualitative demonstration is
presented in Fig. 6, where two continuing frames in a planned
human-like motion with given situation are selected. For each
motion frame in different color boxes, the pose with light color
is the initial state while the pose with dark color is the planned
pose based on given conditions, i.g., goals. It is proved that
our framework has good adaptability for action planning and
driving most humanoid robots.

B. Ablation Study

We implement our framework using two classical network
architectures, MLP-based and Transformer-based policies, to
assess its performance. The KIT ML dataset was selected for
this evaluation due to its consistent data frequency of 240 Hz.

Ablation study of frequency. To evaluate the influence of
data frequency on our framework performance, we train our
network with four types of frequency, i.e., 240Hz (original),
60Hz, 15Hz and random frequency. In the testing process, a
target pose was randomly sampled in the test dataset. The
testing results in Table III indicate that the random sampling
method (hindsight training) achieved the best values of all



TABLE III
THE QUALITATIVE ANALYSIS RESULTS

MPJPE MPJOE
Model Frequency

E-A↓ H-S↓ E-A↓ H-S↓
FMD↓ MM-Dist↓ R-Precision ↑

MLP(w)0 240 0.135 0.181 0.279 0.237 3.56 10.4 0.317

MLP(w) 60 0.091 0.127 0.219 0.178 3.02 9.07 0.341

MLP(w) 15 0.056 0.077 0.172 0.131 1.95 6.74 0.384

MLP(w/o)1 Random 0.031 0.45 0.121 0.084 − − −
MLP(w) Random 0.015 0.026 0.044 0.043 0.951 3.22 0.492

Transformer(w/o)2 Random 0.023 0.031 0.071 0.058 − − −
Transformer(w)3 Random 0.008 0.019 0.039 0.036 0.737 3.07 0.508

Fig. 6. The implementation of our framework for expressive human-like
behaviors in different humanoid robots. From left to right, the three popular
humanoid robots are Fourier’s GR1, Unitree’s G1, and PAL’s TALOS.

evaluation metrics for behavioral similarity and appropriate-
ness compared to others with fixed frequency. The reason is
that the two training frames for fixed frequency groups are too
close to identify the difference between the frames when the
dataset frequency is too high. The inference is supported by the
tendency of experimental results for all the evaluation metrics
while the dataset frequency is decreased. As the motion speed
of demonstrated human action is not uniformly distributed in
the time domain, it still cannot achieve optimal framework per-
formance even with small recording frequencies, such as 15Hz.
Due to the random frequency strategy enlarging the dataset
and enriching the data range by randomly selecting goals from
the trajectory, the performance of E-A and H-S is improved.
Furthermore, the hindsight training method also enriched the
motion semantics of human-demonstrated behavior. Therefore,
the contextual appropriateness is enhanced, which is indicated
by the metrics of FMD, MM-Dist, and R-Precision.

Ablation study of motion situation. To explore the effects
of the motion situation l for human-like motion generation, an
ablation study with two architectures is carried out, and the
results are shown in Table III. Flag (w) means the model is
trained by the dataset with motion situation l. Otherwise, it is
marked as (w/o). The results show that the model performance
for both behavioral similarity and appropriateness trained with
motion situation l is better than that without motion situation.
The reason for this promotion is that the appropriate human
action pose is related to the contextual situation and motion
target, such as ”lifting a box while avoiding collisions with
the table on your left”. Unfortunately, this information of
contextual situation cannot be explicitly represented by human

Fig. 7. The results of ablation for observation input in our framework. The
X-axis means the locking data, e.g., the ”None” means that we provide whole
observation, while ”N” means the Neck data in observation is missing.

actions data. Thereby, the dataset with situation context l is
more essential for the human-like behavior planning task for
humanoid robots.

Ablation study of observation. The results in Fig. 7
indicate that the missing observation of ”pelvis, neck, shoulder,
and elbow” influence E-A in both MPJPE and MPJOP is
less. However, it is hugely damaged the H-S and behavioral
appropriateness. The reason is that lack of observation of these
joints would destroy the body chain which will suffer the
generation performance. In contract, the missing observation
of ”Hand and Wrist&hand” has less impact on both behav-
ior similarity and appropriateness, due to the end-effectors’
human-like poses along with the part of our training target,
i.e., generating a pose to meeting the goals. Therefore, it is
necessary to ensure the integrity of the observations.

C. Comparative Results

To prove the efficiency of our method, we compare our
framework with other state-of-the-art works. Three classical
methods are selected in the comparison study, i.e., IK algo-
rithm, siMLPe [32], and HumanPlus [22].

Methods comparison. For behavioral similarity, the results
shown in Table IV demonstrated that our approach achieves
better results on both the MPJOE and MPJPE metrics com-
pared to the siMLPe and HumanPlus models. This outcome
arises because the selected model just considers the behavioral
traits in human-demonstrated sequential motion, which are
also widely accepted by motion synthesis. Consequently, these
methods do not perform as expected when dealing with unseen
motion traits in training dataset, which are common in daily
tasks. Fortunately, our approach has the capability to address
this challenge due to its innovative mechanism. By comparing



Fig. 8. An example of action-wise results (“Playing Kung Fu”) performed by the humanoid robot G1. Motion sequences are shown from left to right. From
top to bottom: (1) human demonstration data from our dataset, (2) results generated by siMLPe, (3) motions planned by the IK algorithm with target pose
g, and (4) results produced by our proposed method (HuBE) conditioned on g and contextual situation l. Due to the physical constraints of G1, the target g
refers to the wrist poses of both arms.

with IK, our framework gets poorer but acceptable results in
E-A with both MPJRE and MPJOE metrics as the E-A is the
only target to optimize for the IK solver. Specially, the error of
E-A in our method is mainly introduced in generation process.
However, we can achieve better performance in H-S than IK,
which ensures that the generated pose for humanoid robots
is more similar to humans. Another advantage of our method
(0.0207s) is time-saving when compared with IK (0.3618s),
which is based on a searching mechanism. Therefore, our
method is a good choice for human-like pose generation
tasks. For behavioral appropriateness, our method can achieve
smaller FMD and MM-Dist values, which means that our
method can generate higher quality and closer distribution
of real actions than the selected method. Furthermore, the
higher the R-Precision value indicates that our method can
get better semantic matching accuracy between the generated
action and the situation description. Therefore, the behavioral
appropriateness of the generated action in our module is
guaranteed.

Action-wise. We also evaluated our method with different
actions, and the action-wise results are also shown in Fig. 8
and Table IV. By analyzing the results, we know that our
framework is well adapted to various human actions as the
value of evaluation metrics for different actions is stable and
small. Consequently, our framework can effectively generate
stable human-like poses for humanoids over various tasks
when compared with other works.

V. CONCLUSION

In this paper, we presented HuBE, a bi-level closed-loop
framework for human-like behavior execution in humanoid
robots. By integrating robot state, goal poses, and contextual
situations, our framework enables the generation of behaviors
that satisfy both behavioral similarity and appropriateness.

To support this framework, we developed HPose, a context-
enriched dataset with 6D joint pose representation and sit-
uational annotations, and introduced a bone scaling-based
data augmentation strategy to ensure millimeter-level cross-
embodiment compatibility across heterogeneous humanoid
robots. Extensive experiments on multiple commercial plat-
forms demonstrated that HuBE significantly outperforms state-
of-the-art methods. These results highlight the potential of
HuBE to serve as a transferable foundation for scalable and
socially acceptable human-like behavior execution. One con-
straint of HuBE is that our planner primarily emphasizes the
human-like movements of the robot’s upper body. However,
the movements of the lower body are also significant in influ-
encing human actions. Therefore, our upcoming research will
focus increasingly on designing full-body expressive behaviors
that are feasible and mimic human movements.
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